
International Invention of Scientific Journal

Online ISSN: 2457-0958

Available Online at http://www.iisj.in Volume 8, Issue 02(April-May-June)|2024|Page: 66-83

IISJ: April-May-June 2024 Page | 66
© Navid Vaziri et al.

Original Research Paper-Electrical Engineering

Comprehensive Analysis and Exploration of Design Space for Hardware

Implementation of Advanced Encryption Standard (AES) Algorithm on FPGA

Platform

Authors:

Navid Vaziri
1*

, Mirza Kouchaki
1
.

1
Department of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

Corresponding Author:

Navid Vaziri

Department of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran, Email:

Navid.Vaziri1360@gmail.com

Article Received: 18-April-2024 Revised: 08-May-2024 Accepted: 28-May-2024

ABSTRACT:

This research delves into the analysis and exploration of various design implementations of the AES encryption algorithm

using Vivado software. Twenty-eight executions encompassing different implementation designs, employing resource

sharing techniques and pipelining, are presented. Through synthesis and implementation, metrics such as static and

dynamic power consumption, maximum circuit operating frequency, resource utilization, the number of slices per module,

operational circuit efficiency, etc., are reported. To evaluate the results, four merit coefficients are considered, namely the

ratio of operational efficiency to the number of consumed slices and dynamic power consumption, and the ratio of the

maximum circuit operating frequency to the number of slices and dynamic power consumption. The highest operational

efficiency and top two merit coefficients are obtained for various scenarios using pipelining and not utilizing resource

sharing techniques. The highest third and fourth merit coefficients, along with the highest operating frequency, are

achieved when employing both pipelining and resource sharing simultaneously. The optimal design is one that,

considering trade-offs between metrics, can achieve the best results in terms of dynamic power consumption, resource

utilization, operating frequency, and operational efficiency.

Keywords: Encryption, Synthesis, Maximum Operating Frequency, Circuit Operational Efficiency, Merit Coefficient

INTRODUCTION:

In contemporary times, the growth of lightweight,

robust, and effective encryption algorithms is essential

for ensuring network security in various information

technology applications. Consequently, the Advanced

Encryption Standard (AES) has been developed. This

advanced encryption standard is an efficient secure

mechanism that performs better than other symmetric

key encryption algorithms by maintaining the

confidentiality of messages. Identity verification,

confidentiality, and integrity are considered as crucial

objectives for encryption protocols. AES fulfills

fundamental security objectives such as availability,

confidentiality, and integrity throughout communication

in insecure transmission media. Due to its resistance

against brute-force attacks, AES has been widely

implemented on various hardware platforms, including

Graphics Processing Units (GPUs), Embedded

Processors, Application-Specific Integrated Circuits

(ASIC), and Field-Programmable Gate Arrays (FPGA)

[1]. The AES encryption involves a sequence of

operations, including AddRoundKey, SubBytes,

ShiftRows, and MixColumns. The decryption process

comprises a similar sequence of operations and

functions, with the only difference being that decryption

involves a process of calculating inverses [2].

Recently, numerous articles have focused on the

efficient implementation of AES on FPGA. For instance,

authors in [3] present an efficient implementation

leading to high operational throughput, suitable for

applications requiring speed and high performance.

Furthermore, authors in [4] and [5] investigate pipeline

techniques, sub-pipelining, and loop unrolling to

enhance the frequency and operational throughput of

AES execution on FPGA. Farashahi and colleagues

provide a high-speed hardware implementation of the

AES algorithm on Xilinx Virtex-5, achieving an

operational throughput of 86 gigabits per second and a

mailto:Navid.Vaziri1360@gmail.com

IISJ: April-May-June 2024 Page | 67

theoretical maximum frequency of 671.5241 megahertz

[6]. Two different methods based on search tables,

namely Substitution-Permutation Network (SPN) and T-

box, are employed for effective FPGA design. SPN-

based encryption and decryption are not only memory-

intensive but also asymmetric. Consequently, separate

designs for encryption and decryption processes are

implemented, occupying a significant amount of Block

RAM (BRAM) in SPN-based AES. However, achieving

clock speed and operational throughput in AES design is

challenging due to its complexity and dynamic nature

[7].

Some common architectures are outlined as follows.

Sheikhpour and Mahani [8] developed a 32-bit AES

encryption/decryption for the Internet of Things (IoT)

and resource-constrained applications. A cost-effective

and error-resistant structure for the data path was

devised. Subsequently, an expanded key processing unit

for encryption/decryption processes was designed,

minimizing the area used by sharing resources among

encryption and decryption operations.

Zodpe and Sapkal [9] presented a Random Sequence

Number Generator (PNSG) to generate S-box and initial

keys for encryption/decryption. Linear Feedback Shift

Register (LFSR) with an initial state and feedback

specified by a polynomial generator was used for PNSG

design. The encryption strength increased, but the non-

pipelined design requires substantial hardware resources.

In [10], an AES_q encryption was introduced for

securing the TCP/IP protocol. To enhance the

conventional AES, a Boolean Expression (BE) of

column mixing using gate substitution and resource-

sharing structure was employed. An optimized AES

architecture was obtained to minimize power

consumption. However, time complexity needs to be

minimized to avoid delays during communication using

the TCP/IP protocol. Kumar et al. [11] designed the

Lightweight AES algorithm (LAES) on Artix-7 and

Kintex-7 FPGAs for securing audio data. The necessary

operations for column mixing in the LAES algorithm

were reduced compared to the regular AES algorithm.

This reduction led to lower delays, utilized fewer logical

operations, and reduced the complexity of the LAES

algorithm during audio data encryption. However, the

reduction in MixColumn resulted in increased use of

multiplexers.

Wagner and colleagues [12] implemented a substitution

box using the Rotational Symmetry function. It was

designed with internal multiplexers and registers,

requiring no Block RAM (BRAM). Boolean coverage in

decryption was applied to enhance resistance against

attacks. A masked AES design was utilized to optimize

the execution of the search table. However, the

replication of linear operators and their independent

functioning increased the overall area of AES. Kumar

[13] developed the MPPRM architecture for designing

the substitution byte transformation and its inverse. As a

result, hardware resources such as AND and XOR gates

were reduced using MPPRM. A 128-bit key was

generated by the key expansion structure and applied to

the sub-pipelined data structure. High-speed

encryption/decryption in AES was achieved by using a

delay module at the output of the AND gate. However,

due to key repetition in the encryption process, the area

usage increased.

The existing methods are analyzed and explained as

follows: For improved AES execution, hardware

resources (such as slices and search tables) are less

required during the encryption/decryption process.

However, when the MixColumn operation is minimized

in LAES, the demands for multiplexers increase [11].

The repetition of linear operations leads to an increase in

the required area for AES in encryption/decryption

processes [12]. Additionally, hardware resources for

AES improve when designed in a non-pipelined manner.

The delay in the MixColumn operation in regular AES is

higher [14].

The AES algorithm can be implemented using pipeline,

semi-pipeline, and non-pipeline techniques. Non-

pipeline implementations lead to area optimization at the

expense of reduced speed. The execution of pipeline and

sub-pipeline techniques results in increased operational

throughput and increased area usage since the pipeline

technique allows processing multiple blocks

simultaneously [15]. In this study, the exploration of the

design space for AES-128 encryption has been

conducted. Twenty-eight different implementation

designs are executed, and aspects such as power

consumption, circuit operating frequency, efficiency,

and resource utilization are reported. By examining the

results, the best implementations, achieving good results

while maintaining a trade-off between the mentioned

criteria, are introduced. The aim of this research is a

comprehensive analysis and exploration of the design

space for the hardware implementation of the Advanced

Encryption Standard (AES) algorithm on the FPGA

platform. In this regard, various combinations of

pipeline implementations and hardware reuse techniques

are considered. Subsequently, the results are compared

based on resource utilization, operating frequency,

output efficiency, and power consumption.

METHODS:

The AES cipher employs a block algorithm with a fixed

block size of 128 bits and a variable key length of

128/192/256 bits, requiring 10/12/14 rounds for a

complete operation. The architecture of AES includes

encryption and decryption processes. The encryption and

decryption rounds for an AES-128 cipher are illustrated

in Fig. 1. The complete encryption of a plaintext requires

IISJ: April-May-June 2024 Page | 68

ten rounds. Each round of the encryption algorithm

(except the tenth round) comprises four logical

operations. The MixColumns operation is not performed

in the last round to ensure reversibility during

decryption. Similarly, the decryption process consists of

ten rounds, serving as the inverse of the encryption for

generating the decrypted plaintext.

Fig. 1 AES Encryption and Decryption Flowchart

The encryption process begins with the addition of the

key for the initial round. The plaintext, XORed with an

initial round key, undergoes encryption. Processed data

then undergoes multiple rounds of operations to generate

the ciphertext. The result after each round is recognized

as a state. The state is an array of bytes, forming a 4x4

byte matrix since the block size is 128 bits (16 bytes).

Mathematical Implementation of AES

Decryption:

The inverse operations of row permutation, inverse

substitution, key addition, and inverse column mixing

are performed in order.

Inverse Row Permutation:

Depending on the row number, each row of the matrix is

cyclically shifted to the right. The first row remains

unchanged, and the second, third, and fourth rows are

shifted by 1, 2, and 3 positions to the right, respectively.

[

] [

]

IISJ: April-May-June 2024 Page | 69

Inverse Byte Substitution:

This is a non-linear transformation where a byte is

replaced with a value from the inverse substitution box

(S-box). The inverse substitution box is used to

substitute data. In 8-bit data, the first 4 bits represent the

row, and the last 4 bits represent the column. The byte

substitution method for a block is to replace the 8-bit

data with the specified row and column indices. The

decryption substitution box is illustrated in hexadecimal

format in Fig. 2.

Fig. 2 Inverse S-box in Hexadecimal Format

Adding Round Key:

Adding the round key is the same for both encryption and decryption. Here, 16 bytes (128 bits) are considered, and they

are XORed with the round key, as illustrated in Fig. 3.

Fig. 3 Adding Round Key

Inverse Mix Column:

Consider the inverse state matrix as follows:

[

]

Here, each row is multiplied in the column to obtain the inverse mixed column (S') as shown in the equation.

IISJ: April-May-June 2024 Page | 70

[

] [

] [

]

Therefore, matrix multiplication with a predefined matrix for decryption, for example, the output of the previous

transformation function in the decryption process, yields the new state matrix in the decryption process as indicated in the

equation.

New State Matrix == State Matrix Predefined Matrix

[

] . [

] [

]

Pipeline Architecture Considered:

The architecture, depicted in Fig. 4, includes a data register between each round for sharing processed data. Each round

key is generated and stored in a separate register. By implementing the pipeline structure in the following architecture, the

processing cycle time is reduced, and the operational capability of the system is increased.

Fig. 4 Pipeline Structure for AES Algorithm

Resource Sharing Technique:

This technique, also known as hardware reuse and

resource sharing, efficiently shares hardware resources

between the encryption and decryption processes. The

goal of using this technique is to minimize the utilized

area.

A summary of the implementation of pipelined AES on

FPGA includes the following:

1. Input and Output: The FPGA design takes plaintext

inputs and keys and produces the corresponding

ciphertext as output.

2. Pipeline Stages: The AES algorithm is divided into

several stages, where each stage performs a specific

operation of the AES encryption or decryption process.

These stages are implemented as modules or separate

blocks in the FPGA design.

3. State Registers: Internal registers (state) are used to

store intermediate values at each stage of the pipeline.

4. Round Keys: Round keys are derived from the initial

encryption key and are used at each stage of the pipeline.

The FPGA design generates and updates round keys as

needed for each round of the encryption algorithm.

5. Parallel Processing: FPGA utilizes its parallel

processing capabilities to perform multiple encryption

operations simultaneously.

6. Clock Synchronization: Pipeline stages are

synchronized with a common clock signal to ensure

proper sequencing and coordination of encryption

operations.

7. Resource Utilization: Resources such as lookup tables

and flip-flops are effectively used for executing pipeline

stages and managing data flow.

Simulation Descriptions:

In this project, the exploration of the design space of the

AES encryption algorithm and the presentation of

various implementation methods have been addressed.

IISJ: April-May-June 2024 Page | 71

To achieve this, techniques such as pipelining and

resource sharing have been employed. The codes were

executed in the Vivado software using VHDL language

and on the Virtex-7 FPGA chip.

The file naming convention is in the form of

AES_PR(X)_P{Y)_HR(Z).

In this naming convention, PR is used to specify the

presence or absence of pipeline registers between the

four different stages of one round out of the 10 rounds of

AES encryption, and the number X represents the count

of these registers.

If X = 0, it means no registers have been used within

each round of the algorithm. If X = 1, it means one

register between ShiftRow and MixColumn has been

used. If X = 2, it means one register between ShiftRow

and MixColumn and one register between MixColumn

and AddRoundKey have been used.

If X = 3, it means that a register has been used between

all stages (four stages) of each round.

P indicates the presence or absence of a register between

different rounds. If Y = 0, it means there is no register,

and if it is 1, it means a register has been placed between

consecutive rounds.

HR represents the number of hardware resources

(modules used). If Z = 10, it means there is no resource

sharing, and for 10 rounds, 10 separate modules have

been used.

If Z = 2, it means that for 10 rounds, two modules have

been used. Therefore, each of these two modules must be

used 5 times, which is equivalent to using 10 modules.

If Z = 5, it means that for 10 rounds, 5 modules have

been used. Therefore, each of these 5 modules must be

used 2 times. If Z = 1, it means that for 10 rounds, 10

modules have been used. In the case of Z = 1, the

condition Y = 1 is no longer meaningful because only

one module is present. As a result, we will have 28

different implementation scenarios. By implementing

and coding these 28 scenarios, a search was conducted in

the design space, and the obtained results were examined

and analyzed. The green color in Table 1 indicates cases

where both resource sharing techniques and internal and

intermediate pipeline registers have been used in the

design. For example, in PR0_P0_HR1, the reuse of

resources has occurred 10 times, and the design lacks

internal and intermediate pipeline registers. In Table 1, a

brief description of 28 different implementation

scenarios is provided.

Row Descriptions PR(X)_P(Y)_HR(Z)

1 No intermediate and internal round registers 0_0_1

2 No intermediate and internal round registers 0_0_2

3 No intermediate and internal round registers 0_0_5

4 No intermediate and internal round registers, no resource sharing 0_0_10

5 No internal round registers. 0_1_2

6 No internal round registers. 0_1_5

7 No internal round registers, no resource sharing 0_1_10

8 No intermediate round registers 1_0_1

9 No intermediate round registers 1_0_2

10 No intermediate round registers 1_0_5

11 No intermediate round registers, no resource sharing 1_0_10

12 1_1_2

13 1_1_5

14 No resource sharing 1_1_10

15 No intermediate round registers 2_0_1

16 No intermediate round registers 2_0_2

17 No intermediate round registers 2_0_5

18 No register between rounds and no sharing of resources 2_0_10

19 2_1_2

20 2_1_5

21 No resource sharing 2_1_10

22 No intermediate round registers 3_0_1

23 No intermediate round registers 3_0_2

24 No intermediate round registers 3_0_5

25 No intermediate round registers, no resource sharing 3_0_10

26 3_1_2

27 3_1_5

28 No resource sharing 3_1_10

IISJ: April-May-June 2024 Page | 72

Code Review:

For each of the 28 mentioned scenarios, a folder

containing VHDL codes has been provided. For each

scenario, there are codes named AES_Sbox,

Key_Expansion, round, top, and top_test. In the byte

substitution stage, it is possible to use a pre-existing

RAM and implement the Sbox function by addressing it

and reading the output value. However, this memory

requires a large volume. Therefore, instead of this

approach, calculations for the substitution box have been

coded in the AES_Sbox code.

RESULTS:

In this project, a search in the design space of the AES

encryption algorithm has been conducted, and various

implementations have been presented using pipeline

techniques and resource sharing. The execution time of

the code is considered to be 1000 nanoseconds (one

microsecond). The clock cycle period is set to 10000

picoseconds (10 nanoseconds). The encryption is

AES_128, so the plaintext, key, and ciphertext are all

128 bits, with bit numbers ranging from 0 to 127. The

input data and encryption key are assumed to be the

same for all 28 implementations, resulting in the same

ciphertext. Table 2 displays the input data, encryption

key, and ciphertext.

Table 2. Display of Input Data, Encryption Key, and Ciphertext.

3243f6a8885a308d313198a2e0370734 Input Data

2b7e151628aed2a6abf7158809cf4f3c Encryption Key

3902dc1925dc116a409850b1dfb9732 Ciphertext

Fig. 5 Simulation Results for 28 Different Implementations of Pipelining and Resource Sharing in AES Encryption

In Fig. 5, for each of the 28 states PR(X)_P(Y)_HR(Z),

parameters such as WNS, total power consumption,

static power, dynamic power, operational efficiency,

maximum circuit operating frequency, latency, number

of flip-flops, number of lookup tables, and number of

slices are reported.

WNS is used to indicate the correct timing for data

output. The period is the time period in which WNS

becomes negative. According to the Vivado guide, for

IISJ: April-May-June 2024 Page | 73

more accurate parameter recording, WNS should be

negative.

The maximum circuit operating frequency is in MHz and

is obtained from the following relationship:

Fmax = 1000/ (period – WNS)

Static power is specific to the chip being used and is

relatively constant across different implementation

states. Therefore, in the 28 executions, static power

consumption remains relatively constant.

Dynamic power is the instantaneous power of the circuit

and depends on the voltage level and logic and variable

resources.

Troput, or operational efficiency, is essentially the

encoding rate and is reported in megabits per second. In

AES-128, it is obtained from the following relationship.

Throughput = (Fmax*128*parallel work) / latency

Parallel work refers to the concurrent execution of tasks,

which occurs as a result of pipelining.

The lookup table (LUT) in the search table is used to

determine the logic of the output and represents the

combinational logic of the circuit. The number of LUTs

affects the number of consumed slices. The number of

slices in the utilized region and the final circuit size are

influential. Flip-flops are single-bit memory cells used to

store the circuit state. The number of flip-flops and

search tables provide an indication of the consumed

resources, but for the purpose of comparing the 28

implementations, the required number of slices for each

is also presented in the "slice" column. Power

consumption parameters, resource utilization, and lower

latency are desirable, and higher operating frequency

and operational efficiency result in better performance.

However, these factors are not independent, and reliance

on a single criterion is not advisable. An ideal

implementation should have both operational efficiency

and power consumption within acceptable ranges.

In Table 3, the values for total power consumption, static

power, and dynamic power are presented. Static power is

related to the board and is relatively independent of

different implementation scenarios. Therefore, in the 28

executions, static power consumption remains relatively

constant at around 0.25 watts.

Table 3. Total Power Consumption, Static Power, and Dynamic Power.

Dynamic Power

Consumption

Static Power Consumption Total Power Consumption

0.317 0.281 0.599 0_0_1

0.4158 0.2442 0.66 0_0_2

0.66065 0.24435 0.905 0_0_5

1.053 0.247 1.3 0_0_10

0.31528 0.24772 0.563 0_1_2

0.4761 0.2139 0.69 0_1_5

0.55545 0.24955 0.805 0_1_10

0.3672 0.2448 0.612 1_0_1

0.35282 0.24518 0.598 1_0_2

0.43712 0.24588 0.683 1_0_5

0.87438 0.24662 1.121 1_0_10

0.32718 0.24682 0.574 1_1_2

0.35754 0.24846 0.606 1_1_5

0.5838 0.2502 0.834 1_1_10

0.34869 0.24231 0.591 2_0_1

0.366 0.244 0.61 2_0_2

0.369 0.246 0.615 2_0_5

0.8931 0.2519 1.145 2_0_10

0.32547 0.24553 0.571 2_1_2

0.38308 0.24492 0.628 2_1_5

0.55338 0.24862 0.802 2_1_10

0.38186 0.24414 0.626 3_0_1

0.3672 0.2448 0.612 3_0_2

0.3968 0.2432 0.64 3_0_5

0.8814 0.2486 1.13 3_0_10

IISJ: April-May-June 2024 Page | 74

0.30856 0.24244 0.551 3_1_2

0.4158 0.2442 0.66 3_1_5

0.55614 0.24986 0.806 3_1_10

According to Table 4, designs 0_0_10, 1_0_10, 2_0_10, and 3_0_10 have the highest dynamic power consumption, while

designs 0_0_1, 0_1_2, 1_1_2, 2_1_2, and 3_1_2 exhibit the lowest dynamic power consumption.

Table 4. Comparison of Dynamic Power Consumption in 28 Implementations.

0.317 0_0_1

0.4158 0_0_2

0.66065 0_0_5

1.053 0_0_10

0.31528 0_1_2

0.4761 0_1_5

0.55545 0_1_10

0.3672 1_0_1

0.35282 1_0_2

0.43712 1_0_5

0.87438 1_0_10

0.32718 1_1_2

0.35754 1_1_5

0.5838 1_1_10

0.34869 2_0_1

0.366 2_0_2

0.369 2_0_5

0.8931 2_0_10

0.32547 2_1_2

0.38308 2_1_5

0.55338 2_1_10

0.38186 3_0_1

0.3672 3_0_2

0.3968 3_0_5

0.8814 3_0_10

0.30856 3_1_2

0.4158 3_1_5

0.55614 3_1_10

Resource consumption, including the number of lookup tables, flip-flops, and the number of slices, is reported in Table 5.

Table 5. Comparison of Resource Utilization.

 LUT FF Slice

0_0_1 2441 650 660

0_0_2 2598 778 729

0_0_5 3384 1164 931

0_0_10 4021 384 1083

0_1_2 2509 409 748

0_1_5 3457 1690 968

0_1_10 4023 1536 1107

1_0_1 2410 781 707

1_0_2 2604 1035 739

IISJ: April-May-June 2024 Page | 75

1_0_5 3369 1805 940

1_0_10 4234 1664 1129

1_1_2 2519 1161 718

1_1_5 3493 2329 1000

1_1_10 4071 2816 1108

2_0_1 2402 910 704

2_0_2 2852 1295 838

2_0_5 3523 2444 977

2_0_10 4403 2816 1213

2_1_2 2620 1423 802

2_1_5 3844 2968 1057

2_1_10 4533 3968 1230

3_0_1 2388 1036 710

3_0_2 2871 1551 842

3_0_5 3567 3083 1014

3_0_10 4411 4096 1242

3_1_2 2613 1677 826

3_1_5 3833 3608 1144

3_1_10 4543 5248 1322

According to Table 6, it can be observed that for a specific X and Y, an increase in Z leads to an increase in the number of

consumed slices. Additionally, an increase in X, with fixed Y and Z, as well as an increase in Y with fixed X and Z,

results in an increase in the number of consumed slices. In total, configurations 2_0_10, 2_1_10, 3_0_10, and 3_1_10

have the highest number of slices, while configurations 0_0_1, 1_0_1, 2_0_1, and 3_0_1 have the lowest number of

slices.

Table 6. Comparison of the Number of Slices in 28 Implementation Methods.

660 0_0_1

729 0_0_2

931 0_0_5

1083 0_0_10

748 0_1_2

968 0_1_5

1107 0_1_10

707 1_0_1

739 1_0_2

940 1_0_5

1129 1_0_10

718 1_1_2

1000 1_1_5

1108 1_1_10

704 2_0_1

838 2_0_2

977 2_0_5

1213 2_0_10

802 2_1_2

1057 2_1_5

1230 2_1_10

710 3_0_1

IISJ: April-May-June 2024 Page | 76

842 3_0_2

1014 3_0_5

1242 3_0_10

826 3_1_2

1144 3_1_5

1322 3_1_10

According to Table 7, the circuit operating frequency in configurations 3_0_10, 2_0_10, and 1_0_10 is higher than the

other 28 implementations. However, configurations such as 0_0_10, 1_1_5, 2_0_5, and 3_0_5 have the lowest operating

frequencies.

Table 7. Comparison of Maximum Operating Frequencies in 28 Implementations.

48.90932212 0_0_1

49.30237144 0_0_2

49.74381933 0_0_5

42.94610264 0_0_10

49.94256605 0_1_2

54.81554569 0_1_5

51.89952252 0_1_10

53.7692225 1_0_1

49.21259843 1_0_2

50.73051948 1_0_5

65.4535934 1_0_10

52.15939912 1_1_2

48.09542132 1_1_5

59.05976849 1_1_10

54.83358008 2_0_1

54.09791723 2_0_2

51.14043163 2_0_5

65.50504389 2_0_10

51.76251359 2_1_2

53.76055051 2_1_5

61.5536132 2_1_10

55.33728073 3_0_1

51.00999796 3_0_2

46.91972036 3_0_5

67.45817593 3_0_10

49.38759384 3_1_2

56.05066981 3_1_5

62.37914042 3_1_10

The minimum delay, according to Table 8, is achieved in the implementation with X, Y = 0. Therefore, pipelining

introduces delays in execution.

Table 8. Comparison of Delays in 28 Implementations.

11 0_0_1

6 0_0_2

3 0_0_5

2 0_0_10

11 0_1_2

11 0_1_5

IISJ: April-May-June 2024 Page | 77

11 0_1_10

21 1_0_1

16 1_0_2

13 1_0_5

12 1_0_10

21 1_1_2

21 1_1_5

21 1_1_10

31 2_0_1

26 2_0_2

23 2_0_5

22 2_0_10

31 2_1_2

31 2_1_5

31 2_1_10

41 3_0_1

36 3_0_2

33 3_0_5

32 3_0_10

41 3_1_2

41 3_1_5

41 3_1_10

According to Table 9, the configurations 2_0_10, 3_0_10, and 3_1_10 exhibit the highest operational efficiency. In

executions 0_0_1, 1_0_1, 2_0_1, 3_0_1, we observe the lowest operational efficiency. Therefore, an increase in resource

sharing leads to a reduction in operational efficiency.

Table 9. Comparison of Operational Efficiency in 28 Implementations.

569.1266574 0_0_1

1051.783924 0_0_2

2122.402958 0_0_5

2748.550569 0_0_10

1162.299719 0_1_2

3189.268113 0_1_5

6039.217166 0_1_10

655.4724266 1_0_1

1181.102362 1_0_2

2997.002997 1_0_5

7679.888293 1_0_10

1271.695826 1_1_2

2931.530442 1_1_5

7199.667015 1_1_10

679.228863 2_0_1

1331.64104 2_0_2

3130.683814 2_0_5

8003.525362 2_0_10

1282.37453 2_1_2

3329.685709 2_1_5

7624.705635 2_1_10

IISJ: April-May-June 2024 Page | 78

691.0411642 3_0_1

1269.582171 3_0_2

2911.866282 3_0_5

8364.813815 3_0_10

1233.48527 3_1_2

3499.749139 3_1_5

7789.78534 3_1_10

In the continuation, the four merit coefficients are presented, respectively, as the ratio of operational efficiency to the

number of slices and dynamic power, and the ratio of the maximum circuit frequency to the number of slices and dynamic

power. These coefficients, denoted as C.F4, C.F3, C.F2, C.F1, are shown in Table 10.

According to Table 10, the ratio of operational efficiency to the number of slices has the lowest value in configurations

0_0_1, 1_0_1, 2_0_1, 3_0_1, while the highest values are observed in configurations 0_1_10, 1_1_10, 2_1_10, 3_1_10,

1_0_10, 2_0_10, 3_0_10.

Table 10. Ratio of Operational Efficiency to the Number of Slices.

0.862313117 0_0_1

1.442776302 0_0_2

2.279702425 0_0_5

2.537904496 0_0_10

1.55387663 0_1_2

3.294698464 0_1_5

5.455480729 0_1_10

0.927118001 1_0_1

1.598244063 1_0_2

3.188301061 1_0_5

6.802381127 1_0_10

1.771164103 1_1_2

2.931530442 1_1_5

6.497894418 1_1_10

0.964813726 2_0_1

1.589070453 2_0_2

3.204384661 2_0_5

6.598124783 2_0_10

1.598970736 2_1_2

3.150128391 2_1_5

6.198947671 2_1_10

0.973297414 3_0_1

1.507817306 3_0_2

2.871663 3_0_5

6.734954763 3_0_10

1.493323572 3_1_2

3.059221275 3_1_5

5.892424614 3_1_10

According to Table 11, regarding the ratio of operational efficiency to dynamic power, it is observed that configurations

0_0_1, 1_0_1, 2_0_1, and 3_0_1 have the lowest C.F2 values. On the other hand, configurations 0_1_10, 1_1_10,

2_1_10, and 3_1_10 exhibit the highest C.F2 values.

IISJ: April-May-June 2024 Page | 79

Table 11. Ratio of Operational Efficiency to Dynamic Power.

1795.352231 0_0_1

2529.542867 0_0_2

3212.598135 0_0_5

2610.209467 0_0_10

3686.563432 0_1_2

6698.735797 0_1_5

10872.6567 0_1_10

1785.055628 1_0_1

3347.606038 1_0_2

6856.247705 1_0_5

8783.238743 1_0_10

3886.838518 1_1_2

8199.167763 1_1_5

12332.42038 1_1_10

1947.944773 2_0_1

3638.363496 2_0_2

8484.237979 2_0_5

8961.510875 2_0_10

3940.069838 2_1_2

8691.880831 2_1_5

13778.42646 2_1_10

1809.671514 3_0_1

3457.467787 3_0_2

7338.372686 3_0_5

9490.371926 3_0_10

3997.554027 3_1_2

8416.905096 3_1_5

14006.87838 3_1_10

According to Table 12, concerning the ratio of the maximum circuit frequency to the number of slices, it is observed that

configurations 0_0_10, 0_1_10, and 3_0_5 have the lowest C.F3 values. On the other hand, configurations 0_0_1, 1_0_1,

2_0_1, and 3_0_1 exhibit the highest C.F3 values.

Table 12. Ratio of Maximum Circuit Frequency to Number of Slices.

0.074105034 0_0_1

0.067630139 0_0_2

0.053430526 0_0_5

0.039654758 0_0_10

0.066768136 0_1_2

0.05662763 0_1_5

0.046883038 0_1_10

0.076052649 1_0_1

0.066593503 1_0_2

0.053968638 1_0_5

0.057974839 1_0_10

0.072645403 1_1_2

0.048095421 1_1_5

0.05330304 1_1_10

IISJ: April-May-June 2024 Page | 80

0.077888608 2_0_1

0.064555987 2_0_2

0.052344352 2_0_5

0.054002509 2_0_10

0.064541788 2_1_2

0.050861448 2_1_5

0.050043588 2_1_10

0.077939832 3_0_1

0.060581945 3_0_2

0.046271914 3_0_5

0.054314151 3_0_10

0.059791276 3_1_2

0.047185431 3_1_5

0.048995341 3_1_10

According to Table 13, concerning the ratio of the maximum circuit frequency to dynamic power consumption, it is

observed that configurations 0_0_10, 1_0_10, 2_0_10, and 3_0_10 have the lowest C.F4 values. On the other hand,

configurations 0_1_2, 1_1_2, 2_1_2, and 3_1_2 exhibit the highest C.F4 values.

Table 13. Ratio of Maximum Circuit Frequency to Dynamic Power Consumption.

154.2880824 0_0_1

118.5723219 0_0_2

75.2952688 0_0_5

40.78452293 0_0_10

158.4070225 0_1_2

115.1345215 0_1_5

93.43689355 0_1_10

146.4303445 1_0_1

139.4835849 1_0_2

116.0562763 1_0_5

74.85714838 1_0_10

159.4211111 1_1_2

134.5175961 1_1_5

101.1643859 1_1_10

157.2559583 2_0_1

147.808517 2_0_2

138.5919556 2_0_5

73.34569912 2_0_10

159.0392773 2_1_2

140.3376593 2_1_5

111.2320886 2_1_10

144.9151017 3_0_1

138.9161164 3_0_2

118.245263 3_0_5

76.53525747 3_0_10

160.0583155 3_1_2

134.8019957 3_1_5

112.1644557 3_1_10

IISJ: April-May-June 2024 Page | 81

From the analysis of the tables, it can be observed that increasing Z leads to a reduction in resource consumption,

decreased latency (in the case of Y=0), and decreased operational efficiency. Decreasing Z results in a reduction in

dynamic power consumption. The only negative effect of increasing pipelining is the increase in circuit delay. Therefore,

overall, increasing the number of pipeline registers contributes to efficiency, power consumption, and resource savings,

with only a slight increase in delay (Table 14). On the other hand, using the resource sharing technique mainly increases

operational efficiency, with minimal impact on other aspects.

Table 14. Results Analysis.

 Best

Performance

Worst

Performance

Analysis

Merit
Factor
1

X arbitrary

Y arbitrary

Z=10

X arbitrary

Y=0
Z=1

Achieves
the best
performance
without
using
resource
sharing.

Merit
Factor
2

X arbitrary

Y=1
Z=10

X arbitrary

Y=0
Z=1

Achieves
the best
performance
without
resource
sharing and
using
pipeline
registers
between
cycles

Merit
Factor
3

X arbitrary

Y=0
Z=10

X=0 Z=10,

X=3, Z=5

Achieves
the best
performance
without
resource
sharing and
without
using
pipeline

registers
between
cycles

Merit
Factor
4

X arbitrary

Y=1
Z=2

X=0
Y=0
Z=10

Achieves
the best
performance
with
resource
sharing and
using

pipeline
registers
between
cycles

CONCLUSION:

The results indicate that the first merit coefficient, or the

ratio of operational efficiency to the number of

consumed slices, has the highest value for Z=10 and the

lowest for Z=1. Therefore, using the resource sharing

technique more will result in a greater reduction in the

ratio of operational efficiency to the number of slices.

IISJ: April-May-June 2024 Page | 82

The second merit coefficient, or the ratio of operational

efficiency to dynamic power consumption, has the

highest value for Z=10, Y=1, and the lowest for Z=1,

Y=0. Thus, employing more of the resource-sharing

technique and not using registers between stages will

lead to a greater reduction in this ratio. The third merit

coefficient, or the ratio of the maximum circuit

frequency to the number of slices, has the highest value

for Z=1, Y=0, and the lowest for Z=10, X=0.

Consequently, using less of the resource-sharing

technique and not employing registers between stages

will result in a greater reduction in the maximum circuit

frequency to the number of slices ratio. The fourth merit

coefficient, or the ratio of the maximum circuit

frequency to dynamic power consumption, has the

highest value for Z=2, Y=1, and the lowest for Z=10,

Y=0. Thus, using less of the resource-sharing technique

and not employing registers between stages will lead to a

greater reduction in the ratio of the maximum circuit

frequency to dynamic power consumption.

Considering these results, there is a need to focus on

having a robust design with better performance in terms

of resource consumption, operational efficiency, circuit

frequency, and power consumption. In the future,

investigating the impact of additional features of Spartan

devices may be interesting. Additionally, integrating

some dynamic reconfiguration mechanisms to optimize

the execution of the AES algorithm could be

worthwhile.

Funding: None.

Conflict of interest: The authors declare that they

have no conflict of interest.

REFERENCES:

1. Kumar TM, Balmuri KR, Marchewka A, Bidare
Divakarachari P, Konda S (2021) Implementation

of Speed-Efficient Key-Scheduling Process of AES
for Secure Storage and Transmission of Data.

Sensors 21(24): 8347.
https://doi.org/10.3390/s21248347

2. Lin S-H, Lee J-Y, Chuang C-C, Lee N-Y, Chen
P–Y, Chin W-L (2023) Hardware Implementation

of High-Throughput S-Box in AES for Information

Security. IEEE Access 11: 59049-59058.
https://doi.org/10.1109/ACCESS.2023.3284142

3. Wang SS, Ni WS (2004) An efficient FPGA
implementation of advanced encryption standard

algorithm. In: 2004 IEEE International Symposium
on Circuits and Systems (ISCAS), IEEE, Vol. 2, pp.

2-597

4. Soliman MI, Abozaid GY (2011) FPGA

implementation and performance evaluation of a
high throughput crypto coprocessor. Journal of

Parallel and Distributed Computing 71(8): 1075-
1084

5. Gielata A, Russek P, Wiatr K (2008) September.
AES hardware implementation in FPGA for

algorithm acceleration purpose. In: 2008
International Conference on Signals and Electronic

Systems, IEEE, pp. 137-140

6. Farashahi RR, Rashidi B, Sayedi SM (2014)
FPGA based fast and high-throughput 2-slow

retiming 128-bit AES encryption algorithm.
Microelectronics Journal 45(8): 1014-1025

7. Kundi DS, Aziz A, Ikram N (2016) A high
performance ST-Box based unified AES

encryption/decryption architecture on FPGA.
Microprocessors and Microsystems 41: 37-46

8. Sheikhpour S, Ko SB, Mahani A (2021) A

lowcost fault-attack resilient AES for IoT
applications. Microelectronics Reliability 123:

114202

9. Zodpe H, Sapkal A (2020) An efficient AES

implementation using FPGA with enhanced security
features. Journal of King Saud University-

Engineering Sciences 32(2): 115-122

10. Madhavapandian S, MaruthuPandi P (2020)

FPGA implementation of highly scalable AES

algorithm using modified mix column with gate
replacement technique for security application in

TCP/IP. Microprocessors and Microsystems 73:
102972

11. Kumar K, Ramkumar KR, Kaur A (2022) A
lightweight AES algorithm implementation for

encrypting voice messages using field
programmable gate arrays. Journal of King Saud

University-Computer and Information Sciences
34(6): 3878-3885

12. Wegener F, De Meyer L, Moradi A (2020) Spin

me right round rotational symmetry for FPGA-
specific AES: Extended version. Journal of

Cryptology 33: 1114-1155

13. Kumar TM, Reddy KS, Rinaldi S,

Parameshachari BD, Arunachalam K (2021) A low
area high speed FPGA implementation of AES

architecture for cryptography application.
Electronics 10(16): 2023

IISJ: April-May-June 2024 Page | 83

14. Shahbazi K, Ko SB (2020) High throughput and

area‐efficient FPGA implementation of AES for
high‐traffic applications. IET Computers & Digital

Techniques, 14(6): 344-352

15. Zodpe H, Sapkal A (2020) An efficient AES

implementation using FPGA with enhanced security
features. Journal of King Saud University-

Engineering Sciences, 32(2): 115-122

