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ABSTRACT: 

This research delves into the analysis and exploration of various design implementations of the AES encryption algorithm 

using Vivado software. Twenty-eight executions encompassing different implementation designs, employing resource 

sharing techniques and pipelining, are presented. Through synthesis and implementation, metrics such as static and 

dynamic power consumption, maximum circuit operating frequency, resource utilization, the number of slices per module, 

operational circuit efficiency, etc., are reported. To evaluate the results, four merit coefficients are considered, namely the 

ratio of operational efficiency to the number of consumed slices and dynamic power consumption, and the ratio of the 

maximum circuit operating frequency to the number of slices and dynamic power consumption. The highest operational 

efficiency and top two merit coefficients are obtained for various scenarios using pipelining and not utilizing resource 

sharing techniques. The highest third and fourth merit coefficients, along with the highest operating frequency, are 

achieved when employing both pipelining and resource sharing simultaneously. The optimal design is one that, 

considering trade-offs between metrics, can achieve the best results in terms of dynamic power consumption, resource 

utilization, operating frequency, and operational efficiency. 
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INTRODUCTION: 

In contemporary times, the growth of lightweight, 

robust, and effective encryption algorithms is essential 

for ensuring network security in various information 

technology applications. Consequently, the Advanced 

Encryption Standard (AES) has been developed. This 

advanced encryption standard is an efficient secure 

mechanism that performs better than other symmetric 

key encryption algorithms by maintaining the 

confidentiality of messages. Identity verification, 

confidentiality, and integrity are considered as crucial 

objectives for encryption protocols. AES fulfills 

fundamental security objectives such as availability, 

confidentiality, and integrity throughout communication 

in insecure transmission media. Due to its resistance 

against brute-force attacks, AES has been widely 

implemented on various hardware platforms, including 

Graphics Processing Units (GPUs), Embedded 

Processors, Application-Specific Integrated Circuits 

(ASIC), and Field-Programmable Gate Arrays (FPGA) 

[1]. The AES encryption involves a sequence of 

operations, including AddRoundKey, SubBytes, 

ShiftRows, and MixColumns. The decryption process 

comprises a similar sequence of operations and 

functions, with the only difference being that decryption 

involves a process of calculating inverses [2]. 

Recently, numerous articles have focused on the 

efficient implementation of AES on FPGA. For instance, 

authors in [3] present an efficient implementation 

leading to high operational throughput, suitable for 

applications requiring speed and high performance. 

Furthermore, authors in [4] and [5] investigate pipeline 

techniques, sub-pipelining, and loop unrolling to 

enhance the frequency and operational throughput of 

AES execution on FPGA. Farashahi and colleagues 

provide a high-speed hardware implementation of the 

AES algorithm on Xilinx Virtex-5, achieving an 

operational throughput of 86 gigabits per second and a 
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theoretical maximum frequency of 671.5241 megahertz 

[6]. Two different methods based on search tables, 

namely Substitution-Permutation Network (SPN) and T-

box, are employed for effective FPGA design. SPN-

based encryption and decryption are not only memory-

intensive but also asymmetric. Consequently, separate 

designs for encryption and decryption processes are 

implemented, occupying a significant amount of Block 

RAM (BRAM) in SPN-based AES. However, achieving 

clock speed and operational throughput in AES design is 

challenging due to its complexity and dynamic nature 

[7]. 

Some common architectures are outlined as follows. 

Sheikhpour and Mahani [8] developed a 32-bit AES 

encryption/decryption for the Internet of Things (IoT) 

and resource-constrained applications. A cost-effective 

and error-resistant structure for the data path was 

devised. Subsequently, an expanded key processing unit 

for encryption/decryption processes was designed, 

minimizing the area used by sharing resources among 

encryption and decryption operations.  

Zodpe and Sapkal [9] presented a Random Sequence 

Number Generator (PNSG) to generate S-box and initial 

keys for encryption/decryption. Linear Feedback Shift 

Register (LFSR) with an initial state and feedback 

specified by a polynomial generator was used for PNSG 

design. The encryption strength increased, but the non-

pipelined design requires substantial hardware resources. 

In [10], an AES_q encryption was introduced for 

securing the TCP/IP protocol. To enhance the 

conventional AES, a Boolean Expression (BE) of 

column mixing using gate substitution and resource-

sharing structure was employed. An optimized AES 

architecture was obtained to minimize power 

consumption. However, time complexity needs to be 

minimized to avoid delays during communication using 

the TCP/IP protocol. Kumar et al. [11] designed the 

Lightweight AES algorithm (LAES) on Artix-7 and 

Kintex-7 FPGAs for securing audio data. The necessary 

operations for column mixing in the LAES algorithm 

were reduced compared to the regular AES algorithm. 

This reduction led to lower delays, utilized fewer logical 

operations, and reduced the complexity of the LAES 

algorithm during audio data encryption. However, the 

reduction in MixColumn resulted in increased use of 

multiplexers. 

Wagner and colleagues [12] implemented a substitution 

box using the Rotational Symmetry function. It was 

designed with internal multiplexers and registers, 

requiring no Block RAM (BRAM). Boolean coverage in 

decryption was applied to enhance resistance against 

attacks. A masked AES design was utilized to optimize 

the execution of the search table. However, the 

replication of linear operators and their independent 

functioning increased the overall area of AES. Kumar 

[13] developed the MPPRM architecture for designing 

the substitution byte transformation and its inverse. As a 

result, hardware resources such as AND and XOR gates 

were reduced using MPPRM. A 128-bit key was 

generated by the key expansion structure and applied to 

the sub-pipelined data structure. High-speed 

encryption/decryption in AES was achieved by using a 

delay module at the output of the AND gate. However, 

due to key repetition in the encryption process, the area 

usage increased. 

The existing methods are analyzed and explained as 

follows: For improved AES execution, hardware 

resources (such as slices and search tables) are less 

required during the encryption/decryption process. 

However, when the MixColumn operation is minimized 

in LAES, the demands for multiplexers increase [11]. 

The repetition of linear operations leads to an increase in 

the required area for AES in encryption/decryption 

processes [12]. Additionally, hardware resources for 

AES improve when designed in a non-pipelined manner. 

The delay in the MixColumn operation in regular AES is 

higher [14]. 

The AES algorithm can be implemented using pipeline, 

semi-pipeline, and non-pipeline techniques. Non-

pipeline implementations lead to area optimization at the 

expense of reduced speed. The execution of pipeline and 

sub-pipeline techniques results in increased operational 

throughput and increased area usage since the pipeline 

technique allows processing multiple blocks 

simultaneously [15]. In this study, the exploration of the 

design space for AES-128 encryption has been 

conducted. Twenty-eight different implementation 

designs are executed, and aspects such as power 

consumption, circuit operating frequency, efficiency, 

and resource utilization are reported. By examining the 

results, the best implementations, achieving good results 

while maintaining a trade-off between the mentioned 

criteria, are introduced. The aim of this research is a 

comprehensive analysis and exploration of the design 

space for the hardware implementation of the Advanced 

Encryption Standard (AES) algorithm on the FPGA 

platform. In this regard, various combinations of 

pipeline implementations and hardware reuse techniques 

are considered. Subsequently, the results are compared 

based on resource utilization, operating frequency, 

output efficiency, and power consumption. 

 

METHODS: 

The AES cipher employs a block algorithm with a fixed 

block size of 128 bits and a variable key length of 

128/192/256 bits, requiring 10/12/14 rounds for a 

complete operation. The architecture of AES includes 

encryption and decryption processes. The encryption and 

decryption rounds for an AES-128 cipher are illustrated 

in Fig. 1. The complete encryption of a plaintext requires 
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ten rounds. Each round of the encryption algorithm 

(except the tenth round) comprises four logical 

operations. The MixColumns operation is not performed 

in the last round to ensure reversibility during 

decryption. Similarly, the decryption process consists of 

ten rounds, serving as the inverse of the encryption for 

generating the decrypted plaintext. 

 

 
Fig. 1 AES Encryption and Decryption Flowchart 

 

The encryption process begins with the addition of the 

key for the initial round. The plaintext, XORed with an 

initial round key, undergoes encryption. Processed data 

then undergoes multiple rounds of operations to generate 

the ciphertext. The result after each round is recognized 

as a state. The state is an array of bytes, forming a 4x4 

byte matrix since the block size is 128 bits (16 bytes). 

 

Mathematical Implementation of AES 

Decryption: 

The inverse operations of row permutation, inverse 

substitution, key addition, and inverse column mixing 

are performed in order. 

 

Inverse Row Permutation: 

Depending on the row number, each row of the matrix is 

cyclically shifted to the right. The first row remains 

unchanged, and the second, third, and fourth rows are 

shifted by 1, 2, and 3 positions to the right, respectively. 
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Inverse Byte Substitution: 

This is a non-linear transformation where a byte is 

replaced with a value from the inverse substitution box 

(S-box). The inverse substitution box is used to 

substitute data. In 8-bit data, the first 4 bits represent the 

row, and the last 4 bits represent the column. The byte 

substitution method for a block is to replace the 8-bit 

data with the specified row and column indices. The 

decryption substitution box is illustrated in hexadecimal 

format in Fig. 2. 

 

 
Fig. 2 Inverse S-box in Hexadecimal Format 

 

Adding Round Key: 

Adding the round key is the same for both encryption and decryption. Here, 16 bytes (128 bits) are considered, and they 

are XORed with the round key, as illustrated in Fig. 3. 

 

 
Fig. 3 Adding Round Key 

Inverse Mix Column: 

Consider the inverse state matrix as follows:  

[

        
  
  

  
  

  
  

  
  

        

] 

Here, each row is multiplied in the column to obtain the inverse mixed column (S') as shown in the equation. 
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Therefore, matrix multiplication with a predefined matrix for decryption, for example, the output of the previous 

transformation function in the decryption process, yields the new state matrix in the decryption process as indicated in the 

equation. 

New State Matrix               == State Matrix                                                          Predefined Matrix 
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Pipeline Architecture Considered: 

The architecture, depicted in Fig. 4, includes a data register between each round for sharing processed data. Each round 

key is generated and stored in a separate register. By implementing the pipeline structure in the following architecture, the 

processing cycle time is reduced, and the operational capability of the system is increased. 

 

 
 

Fig. 4 Pipeline Structure for AES Algorithm 
 

Resource Sharing Technique: 

This technique, also known as hardware reuse and 

resource sharing, efficiently shares hardware resources 

between the encryption and decryption processes. The 

goal of using this technique is to minimize the utilized 

area. 

A summary of the implementation of pipelined AES on 

FPGA includes the following: 

1. Input and Output: The FPGA design takes plaintext 

inputs and keys and produces the corresponding 

ciphertext as output. 

2. Pipeline Stages: The AES algorithm is divided into 

several stages, where each stage performs a specific 

operation of the AES encryption or decryption process. 

These stages are implemented as modules or separate 

blocks in the FPGA design. 

3. State Registers: Internal registers (state) are used to 

store intermediate values at each stage of the pipeline. 

4. Round Keys: Round keys are derived from the initial 

encryption key and are used at each stage of the pipeline. 

The FPGA design generates and updates round keys as 

needed for each round of the encryption algorithm. 

5. Parallel Processing: FPGA utilizes its parallel 

processing capabilities to perform multiple encryption 

operations simultaneously. 

6. Clock Synchronization: Pipeline stages are 

synchronized with a common clock signal to ensure 

proper sequencing and coordination of encryption 

operations. 

7. Resource Utilization: Resources such as lookup tables 

and flip-flops are effectively used for executing pipeline 

stages and managing data flow. 

 

Simulation Descriptions: 

In this project, the exploration of the design space of the 

AES encryption algorithm and the presentation of 

various implementation methods have been addressed. 
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To achieve this, techniques such as pipelining and 

resource sharing have been employed. The codes were 

executed in the Vivado software using VHDL language 

and on the Virtex-7 FPGA chip. 

The file naming convention is in the form of 

AES_PR(X)_P{Y)_HR(Z). 

In this naming convention, PR is used to specify the 

presence or absence of pipeline registers between the 

four different stages of one round out of the 10 rounds of 

AES encryption, and the number X represents the count 

of these registers. 

If X = 0, it means no registers have been used within 

each round of the algorithm. If X = 1, it means one 

register between ShiftRow and MixColumn has been 

used. If X = 2, it means one register between ShiftRow 

and MixColumn and one register between MixColumn 

and AddRoundKey have been used. 

If X = 3, it means that a register has been used between 

all stages (four stages) of each round. 

P indicates the presence or absence of a register between 

different rounds. If Y = 0, it means there is no register, 

and if it is 1, it means a register has been placed between 

consecutive rounds. 

HR represents the number of hardware resources 

(modules used). If Z = 10, it means there is no resource 

sharing, and for 10 rounds, 10 separate modules have 

been used. 

If Z = 2, it means that for 10 rounds, two modules have 

been used. Therefore, each of these two modules must be 

used 5 times, which is equivalent to using 10 modules. 

If Z = 5, it means that for 10 rounds, 5 modules have 

been used. Therefore, each of these 5 modules must be 

used 2 times. If Z = 1, it means that for 10 rounds, 10 

modules have been used. In the case of Z = 1, the 

condition Y = 1 is no longer meaningful because only 

one module is present. As a result, we will have 28 

different implementation scenarios. By implementing 

and coding these 28 scenarios, a search was conducted in 

the design space, and the obtained results were examined 

and analyzed. The green color in Table 1 indicates cases 

where both resource sharing techniques and internal and 

intermediate pipeline registers have been used in the 

design. For example, in PR0_P0_HR1, the reuse of 

resources has occurred 10 times, and the design lacks 

internal and intermediate pipeline registers. In Table 1, a 

brief description of 28 different implementation 

scenarios is provided. 

 

Row Descriptions PR(X)_P(Y)_HR(Z) 

1 No intermediate and internal round registers 0_0_1 

2 No intermediate and internal round registers 0_0_2 

3 No intermediate and internal round registers 0_0_5 

4 No intermediate and internal round registers, no resource sharing 0_0_10 

5 No internal round registers. 0_1_2 

6 No internal round registers. 0_1_5 

7 No internal round registers, no resource sharing 0_1_10 

8 No intermediate round registers 1_0_1 

9 No intermediate round registers 1_0_2 

10 No intermediate round registers 1_0_5 

11 No intermediate round registers, no resource sharing 1_0_10 

12  1_1_2 

13  1_1_5 

14 No resource sharing 1_1_10 

15 No intermediate round registers 2_0_1 

16 No intermediate round registers 2_0_2 

17 No intermediate round registers 2_0_5 

18 No register between rounds and no sharing of resources 2_0_10 

19  2_1_2 

20  2_1_5 

21 No resource sharing 2_1_10 

22 No intermediate round registers 3_0_1 

23 No intermediate round registers 3_0_2 

24 No intermediate round registers 3_0_5 

25 No intermediate round registers, no resource sharing 3_0_10 

26  3_1_2 

27  3_1_5 

28 No resource sharing 3_1_10 
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Code Review: 

For each of the 28 mentioned scenarios, a folder 

containing VHDL codes has been provided. For each 

scenario, there are codes named AES_Sbox, 

Key_Expansion, round, top, and top_test. In the byte 

substitution stage, it is possible to use a pre-existing 

RAM and implement the Sbox function by addressing it 

and reading the output value. However, this memory 

requires a large volume. Therefore, instead of this 

approach, calculations for the substitution box have been 

coded in the AES_Sbox code. 

 

RESULTS: 

In this project, a search in the design space of the AES 

encryption algorithm has been conducted, and various 

implementations have been presented using pipeline 

techniques and resource sharing. The execution time of 

the code is considered to be 1000 nanoseconds (one 

microsecond). The clock cycle period is set to 10000 

picoseconds (10 nanoseconds). The encryption is 

AES_128, so the plaintext, key, and ciphertext are all 

128 bits, with bit numbers ranging from 0 to 127. The 

input data and encryption key are assumed to be the 

same for all 28 implementations, resulting in the same 

ciphertext. Table 2 displays the input data, encryption 

key, and ciphertext. 

 

Table 2. Display of Input Data, Encryption Key, and Ciphertext. 

3243f6a8885a308d313198a2e0370734 Input Data 

2b7e151628aed2a6abf7158809cf4f3c Encryption Key 

3902dc1925dc116a409850b1dfb9732 Ciphertext 

 

 

 
 

Fig. 5 Simulation Results for 28 Different Implementations of Pipelining and Resource Sharing in AES Encryption 

 

In Fig. 5, for each of the 28 states PR(X)_P(Y)_HR(Z), 

parameters such as WNS, total power consumption, 

static power, dynamic power, operational efficiency, 

maximum circuit operating frequency, latency, number 

of flip-flops, number of lookup tables, and number of 

slices are reported. 

WNS is used to indicate the correct timing for data 

output. The period is the time period in which WNS 

becomes negative. According to the Vivado guide, for 
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more accurate parameter recording, WNS should be 

negative. 

The maximum circuit operating frequency is in MHz and 

is obtained from the following relationship: 

Fmax = 1000/ (period – WNS) 

Static power is specific to the chip being used and is 

relatively constant across different implementation 

states. Therefore, in the 28 executions, static power 

consumption remains relatively constant. 

Dynamic power is the instantaneous power of the circuit 

and depends on the voltage level and logic and variable 

resources. 

Troput, or operational efficiency, is essentially the 

encoding rate and is reported in megabits per second. In 

AES-128, it is obtained from the following relationship. 

Throughput = (Fmax*128*parallel work) / latency 

Parallel work refers to the concurrent execution of tasks, 

which occurs as a result of pipelining.  

The lookup table (LUT) in the search table is used to 

determine the logic of the output and represents the 

combinational logic of the circuit. The number of LUTs 

affects the number of consumed slices. The number of 

slices in the utilized region and the final circuit size are 

influential. Flip-flops are single-bit memory cells used to 

store the circuit state. The number of flip-flops and 

search tables provide an indication of the consumed 

resources, but for the purpose of comparing the 28 

implementations, the required number of slices for each 

is also presented in the "slice" column. Power 

consumption parameters, resource utilization, and lower 

latency are desirable, and higher operating frequency 

and operational efficiency result in better performance. 

However, these factors are not independent, and reliance 

on a single criterion is not advisable. An ideal 

implementation should have both operational efficiency 

and power consumption within acceptable ranges. 

In Table 3, the values for total power consumption, static 

power, and dynamic power are presented. Static power is 

related to the board and is relatively independent of 

different implementation scenarios. Therefore, in the 28 

executions, static power consumption remains relatively 

constant at around 0.25 watts. 

 

Table 3. Total Power Consumption, Static Power, and Dynamic Power. 

 

Dynamic Power 

Consumption 

Static Power Consumption Total Power Consumption  

0.317 0.281 0.599 0_0_1 

0.4158 0.2442 0.66 0_0_2 

0.66065 0.24435 0.905 0_0_5 

1.053 0.247 1.3 0_0_10 

0.31528 0.24772 0.563 0_1_2 

0.4761 0.2139 0.69 0_1_5 

0.55545 0.24955 0.805 0_1_10 

    

0.3672 0.2448 0.612 1_0_1 

0.35282 0.24518 0.598 1_0_2 

0.43712 0.24588 0.683 1_0_5 

0.87438 0.24662 1.121 1_0_10 

0.32718 0.24682 0.574 1_1_2 

0.35754 0.24846 0.606 1_1_5 

0.5838 0.2502 0.834 1_1_10 

    

0.34869 0.24231 0.591 2_0_1 

0.366 0.244 0.61 2_0_2 

0.369 0.246 0.615 2_0_5 

0.8931 0.2519 1.145 2_0_10 

0.32547 0.24553 0.571 2_1_2 

0.38308 0.24492 0.628 2_1_5 

0.55338 0.24862 0.802 2_1_10 

    

0.38186 0.24414 0.626 3_0_1 

0.3672 0.2448 0.612 3_0_2 

0.3968 0.2432 0.64 3_0_5 

0.8814 0.2486 1.13 3_0_10 
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0.30856 0.24244 0.551 3_1_2 

0.4158 0.2442 0.66 3_1_5 

0.55614 0.24986 0.806 3_1_10 

 

According to Table 4, designs 0_0_10, 1_0_10, 2_0_10, and 3_0_10 have the highest dynamic power consumption, while 

designs 0_0_1, 0_1_2, 1_1_2, 2_1_2, and 3_1_2 exhibit the lowest dynamic power consumption. 

 

Table 4. Comparison of Dynamic Power Consumption in 28 Implementations. 

0.317 0_0_1 

0.4158 0_0_2 

0.66065 0_0_5 

1.053 0_0_10 

0.31528 0_1_2 

0.4761 0_1_5 

0.55545 0_1_10 

   

0.3672 1_0_1 

0.35282 1_0_2 

0.43712 1_0_5 

0.87438 1_0_10 

0.32718 1_1_2 

0.35754 1_1_5 

0.5838 1_1_10 

   

0.34869 2_0_1 

0.366 2_0_2 

0.369 2_0_5 

0.8931 2_0_10 

0.32547 2_1_2 

0.38308 2_1_5 

0.55338 2_1_10 

   

0.38186 3_0_1 

0.3672 3_0_2 

0.3968 3_0_5 

0.8814 3_0_10 

0.30856 3_1_2 

0.4158 3_1_5 

0.55614 3_1_10 

 

Resource consumption, including the number of lookup tables, flip-flops, and the number of slices, is reported in Table 5. 

 

Table 5. Comparison of Resource Utilization. 

 LUT FF Slice 

0_0_1 2441 650 660 

0_0_2 2598 778 729 

0_0_5 3384 1164 931 

0_0_10 4021 384 1083 

0_1_2 2509 409 748 

0_1_5 3457 1690 968 

0_1_10 4023 1536 1107 

    

1_0_1 2410 781 707 

1_0_2 2604 1035 739 
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1_0_5 3369 1805 940 

1_0_10 4234 1664 1129 

1_1_2 2519 1161 718 

1_1_5 3493 2329 1000 

1_1_10 4071 2816 1108 

    

2_0_1 2402 910 704 

2_0_2 2852 1295 838 

2_0_5 3523 2444 977 

2_0_10 4403 2816 1213 

2_1_2 2620 1423 802 

2_1_5 3844 2968 1057 

2_1_10 4533 3968 1230 

    

3_0_1 2388 1036 710 

3_0_2 2871 1551 842 

3_0_5 3567 3083 1014 

3_0_10 4411 4096 1242 

3_1_2 2613 1677 826 

3_1_5 3833 3608 1144 

3_1_10 4543 5248 1322 

 

According to Table 6, it can be observed that for a specific X and Y, an increase in Z leads to an increase in the number of 

consumed slices. Additionally, an increase in X, with fixed Y and Z, as well as an increase in Y with fixed X and Z, 

results in an increase in the number of consumed slices. In total, configurations 2_0_10, 2_1_10, 3_0_10, and 3_1_10 

have the highest number of slices, while configurations 0_0_1, 1_0_1, 2_0_1, and 3_0_1 have the lowest number of 

slices. 

 

Table 6. Comparison of the Number of Slices in 28 Implementation Methods. 

660 0_0_1 

729 0_0_2 

931 0_0_5 

1083 0_0_10 

748 0_1_2 

968 0_1_5 

1107 0_1_10 

   

707 1_0_1 

739 1_0_2 

940 1_0_5 

1129 1_0_10 

718 1_1_2 

1000 1_1_5 

1108 1_1_10 

   

704 2_0_1 

838 2_0_2 

977 2_0_5 

1213 2_0_10 

802 2_1_2 

1057 2_1_5 

1230 2_1_10 

   

710 3_0_1 
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842 3_0_2 

1014 3_0_5 

1242 3_0_10 

826 3_1_2 

1144 3_1_5 

1322 3_1_10 

 

According to Table 7, the circuit operating frequency in configurations 3_0_10, 2_0_10, and 1_0_10 is higher than the 

other 28 implementations. However, configurations such as 0_0_10, 1_1_5, 2_0_5, and 3_0_5 have the lowest operating 

frequencies. 

 

Table 7. Comparison of Maximum Operating Frequencies in 28 Implementations. 

48.90932212 0_0_1 

49.30237144 0_0_2 

49.74381933 0_0_5 

42.94610264 0_0_10 

49.94256605 0_1_2 

54.81554569 0_1_5 

51.89952252 0_1_10 

   

53.7692225 1_0_1 

49.21259843 1_0_2 

50.73051948 1_0_5 

65.4535934 1_0_10 

52.15939912 1_1_2 

48.09542132 1_1_5 

59.05976849 1_1_10 

   

54.83358008 2_0_1 

54.09791723 2_0_2 

51.14043163 2_0_5 

65.50504389 2_0_10 

51.76251359 2_1_2 

53.76055051 2_1_5 

61.5536132 2_1_10 

   

55.33728073 3_0_1 

51.00999796 3_0_2 

46.91972036 3_0_5 

67.45817593 3_0_10 

49.38759384 3_1_2 

56.05066981 3_1_5 

62.37914042 3_1_10 

 

The minimum delay, according to Table 8, is achieved in the implementation with X, Y = 0. Therefore, pipelining 

introduces delays in execution. 

 

Table 8. Comparison of Delays in 28 Implementations. 

11 0_0_1 

6 0_0_2 

3 0_0_5 

2 0_0_10 

11 0_1_2 

11 0_1_5 
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11 0_1_10 

   

21 1_0_1 

16 1_0_2 

13 1_0_5 

12 1_0_10 

21 1_1_2 

21 1_1_5 

21 1_1_10 

   

31 2_0_1 

26 2_0_2 

23 2_0_5 

22 2_0_10 

31 2_1_2 

31 2_1_5 

31 2_1_10 

   

41 3_0_1 

36 3_0_2 

33 3_0_5 

32 3_0_10 

41 3_1_2 

41 3_1_5 

41 3_1_10 

According to Table 9, the configurations 2_0_10, 3_0_10, and 3_1_10 exhibit the highest operational efficiency. In 

executions 0_0_1, 1_0_1, 2_0_1, 3_0_1, we observe the lowest operational efficiency. Therefore, an increase in resource 

sharing leads to a reduction in operational efficiency. 

 

Table 9. Comparison of Operational Efficiency in 28 Implementations. 

569.1266574 0_0_1 

1051.783924 0_0_2 

2122.402958 0_0_5 

2748.550569 0_0_10 

1162.299719 0_1_2 

3189.268113 0_1_5 

6039.217166 0_1_10 

   

655.4724266 1_0_1 

1181.102362 1_0_2 

2997.002997 1_0_5 

7679.888293 1_0_10 

1271.695826 1_1_2 

2931.530442 1_1_5 

7199.667015 1_1_10 

   

679.228863 2_0_1 

1331.64104 2_0_2 

3130.683814 2_0_5 

8003.525362 2_0_10 

1282.37453 2_1_2 

3329.685709 2_1_5 

7624.705635 2_1_10 
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691.0411642 3_0_1 

1269.582171 3_0_2 

2911.866282 3_0_5 

8364.813815 3_0_10 

1233.48527 3_1_2 

3499.749139 3_1_5 

7789.78534 3_1_10 

 

In the continuation, the four merit coefficients are presented, respectively, as the ratio of operational efficiency to the 

number of slices and dynamic power, and the ratio of the maximum circuit frequency to the number of slices and dynamic 

power. These coefficients, denoted as C.F4, C.F3, C.F2, C.F1, are shown in Table 10. 

According to Table 10, the ratio of operational efficiency to the number of slices has the lowest value in configurations 

0_0_1, 1_0_1, 2_0_1, 3_0_1, while the highest values are observed in configurations 0_1_10, 1_1_10, 2_1_10, 3_1_10, 

1_0_10, 2_0_10, 3_0_10. 

 

Table 10. Ratio of Operational Efficiency to the Number of Slices. 

0.862313117 0_0_1 

1.442776302 0_0_2 

2.279702425 0_0_5 

2.537904496 0_0_10 

1.55387663 0_1_2 

3.294698464 0_1_5 

5.455480729 0_1_10 

   

0.927118001 1_0_1 

1.598244063 1_0_2 

3.188301061 1_0_5 

6.802381127 1_0_10 

1.771164103 1_1_2 

2.931530442 1_1_5 

6.497894418 1_1_10 

   

0.964813726 2_0_1 

1.589070453 2_0_2 

3.204384661 2_0_5 

6.598124783 2_0_10 

1.598970736 2_1_2 

3.150128391 2_1_5 

6.198947671 2_1_10 

   

0.973297414 3_0_1 

1.507817306 3_0_2 

2.871663 3_0_5 

6.734954763 3_0_10 

1.493323572 3_1_2 

3.059221275 3_1_5 

5.892424614 3_1_10 

 

According to Table 11, regarding the ratio of operational efficiency to dynamic power, it is observed that configurations 

0_0_1, 1_0_1, 2_0_1, and 3_0_1 have the lowest C.F2 values. On the other hand, configurations 0_1_10, 1_1_10, 

2_1_10, and 3_1_10 exhibit the highest C.F2 values. 
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Table 11. Ratio of Operational Efficiency to Dynamic Power. 

1795.352231 0_0_1 

2529.542867 0_0_2 

3212.598135 0_0_5 

2610.209467 0_0_10 

3686.563432 0_1_2 

6698.735797 0_1_5 

10872.6567 0_1_10 

   

1785.055628 1_0_1 

3347.606038 1_0_2 

6856.247705 1_0_5 

8783.238743 1_0_10 

3886.838518 1_1_2 

8199.167763 1_1_5 

12332.42038 1_1_10 

   

1947.944773 2_0_1 

3638.363496 2_0_2 

8484.237979 2_0_5 

8961.510875 2_0_10 

3940.069838 2_1_2 

8691.880831 2_1_5 

13778.42646 2_1_10 

   

1809.671514 3_0_1 

3457.467787 3_0_2 

7338.372686 3_0_5 

9490.371926 3_0_10 

3997.554027 3_1_2 

8416.905096 3_1_5 

14006.87838 3_1_10 

 

According to Table 12, concerning the ratio of the maximum circuit frequency to the number of slices, it is observed that 

configurations 0_0_10, 0_1_10, and 3_0_5 have the lowest C.F3 values. On the other hand, configurations 0_0_1, 1_0_1, 

2_0_1, and 3_0_1 exhibit the highest C.F3 values. 

 

Table 12. Ratio of Maximum Circuit Frequency to Number of Slices. 

0.074105034 0_0_1 

0.067630139 0_0_2 

0.053430526 0_0_5 

0.039654758 0_0_10 

0.066768136 0_1_2 

0.05662763 0_1_5 

0.046883038 0_1_10 

   

0.076052649 1_0_1 

0.066593503 1_0_2 

0.053968638 1_0_5 

0.057974839 1_0_10 

0.072645403 1_1_2 

0.048095421 1_1_5 

0.05330304 1_1_10 
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0.077888608 2_0_1 

0.064555987 2_0_2 

0.052344352 2_0_5 

0.054002509 2_0_10 

0.064541788 2_1_2 

0.050861448 2_1_5 

0.050043588 2_1_10 

   

0.077939832 3_0_1 

0.060581945 3_0_2 

0.046271914 3_0_5 

0.054314151 3_0_10 

0.059791276 3_1_2 

0.047185431 3_1_5 

0.048995341    3_1_10 

 

According to Table 13, concerning the ratio of the maximum circuit frequency to dynamic power consumption, it is 

observed that configurations 0_0_10, 1_0_10, 2_0_10, and 3_0_10 have the lowest C.F4 values. On the other hand, 

configurations 0_1_2, 1_1_2, 2_1_2, and 3_1_2 exhibit the highest C.F4 values. 

 

Table 13. Ratio of Maximum Circuit Frequency to Dynamic Power Consumption. 

154.2880824 0_0_1 

118.5723219 0_0_2 

75.2952688 0_0_5 

40.78452293 0_0_10 

158.4070225 0_1_2 

115.1345215 0_1_5 

93.43689355 0_1_10 

   

146.4303445 1_0_1 

139.4835849 1_0_2 

116.0562763 1_0_5 

74.85714838 1_0_10 

159.4211111 1_1_2 

134.5175961 1_1_5 

101.1643859 1_1_10 

   

157.2559583 2_0_1 

147.808517 2_0_2 

138.5919556 2_0_5 

73.34569912 2_0_10 

159.0392773 2_1_2 

140.3376593 2_1_5 

111.2320886 2_1_10 

   

144.9151017 3_0_1 

138.9161164 3_0_2 

118.245263 3_0_5 

76.53525747 3_0_10 

160.0583155 3_1_2 

134.8019957 3_1_5 

112.1644557 3_1_10 
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From the analysis of the tables, it can be observed that increasing Z leads to a reduction in resource consumption, 

decreased latency (in the case of Y=0), and decreased operational efficiency. Decreasing Z results in a reduction in 

dynamic power consumption. The only negative effect of increasing pipelining is the increase in circuit delay. Therefore, 

overall, increasing the number of pipeline registers contributes to efficiency, power consumption, and resource savings, 

with only a slight increase in delay (Table 14). On the other hand, using the resource sharing technique mainly increases 

operational efficiency, with minimal impact on other aspects. 

 

Table 14. Results Analysis. 

 Best 

Performance 

Worst 

Performance 

Analysis 

Merit 
Factor 
1 

X arbitrary    
      
Y arbitrary    
      
Z=10 

X arbitrary    
      

Y=0 
Z=1 

Achieves 
the best 
performance 
without 
using 
resource 
sharing. 

Merit 
Factor 
2 

X arbitrary    
      
Y=1 
Z=10 

X arbitrary    
      
Y=0 
Z=1 

Achieves 
the best 
performance 
without 
resource 
sharing and 
using 
pipeline 
registers 
between 
cycles 

Merit 
Factor 
3 

X arbitrary    
      
Y=0 
Z=10 

X=0 Z=10, 
 
X=3, Z=5 

Achieves 
the best 
performance 
without 
resource 
sharing and 
without 
using 
pipeline 

registers 
between 
cycles 

Merit 
Factor 
4 

X arbitrary    
      
Y=1 
Z=2 

X=0 
Y=0 
Z=10 

Achieves 
the best 
performance 
with 
resource 
sharing and 
using 

pipeline 
registers 
between 
cycles 

 

CONCLUSION: 

The results indicate that the first merit coefficient, or the 

ratio of operational efficiency to the number of 

consumed slices, has the highest value for Z=10 and the 

lowest for Z=1. Therefore, using the resource sharing 

technique more will result in a greater reduction in the 

ratio of operational efficiency to the number of slices. 
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The second merit coefficient, or the ratio of operational 

efficiency to dynamic power consumption, has the 

highest value for Z=10, Y=1, and the lowest for Z=1, 

Y=0. Thus, employing more of the resource-sharing 

technique and not using registers between stages will 

lead to a greater reduction in this ratio. The third merit 

coefficient, or the ratio of the maximum circuit 

frequency to the number of slices, has the highest value 

for Z=1, Y=0, and the lowest for Z=10, X=0. 

Consequently, using less of the resource-sharing 

technique and not employing registers between stages 

will result in a greater reduction in the maximum circuit 

frequency to the number of slices ratio. The fourth merit 

coefficient, or the ratio of the maximum circuit 

frequency to dynamic power consumption, has the 

highest value for Z=2, Y=1, and the lowest for Z=10, 

Y=0. Thus, using less of the resource-sharing technique 

and not employing registers between stages will lead to a 

greater reduction in the ratio of the maximum circuit 

frequency to dynamic power consumption. 

Considering these results, there is a need to focus on 

having a robust design with better performance in terms 

of resource consumption, operational efficiency, circuit 

frequency, and power consumption. In the future, 

investigating the impact of additional features of Spartan 

devices may be interesting. Additionally, integrating 

some dynamic reconfiguration mechanisms to optimize 

the execution of the AES algorithm could be 

worthwhile. 
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