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ABSTRACT:  
This research studied the switching process of an electroosmotic flow (EOF) in a Y-shape three-way microchannel by 

using analytical and numerical solutions. In the analytical study of the flow based on some proposed simplifying 

assumptions, equations were introduced to approximate the switching voltage ratio (λ) and EOF rate before and after 

the switching process. In the analyses, parameters “distance between outlet branches and the three-way” and 

“dimensionless thickness of the electrical double layer” were assumed to be flow variables, and their effects on the 

flow’s ultimate condition were evaluated. Numerically, the Lattice Boltzmann method (LBM) and Poisson-Boltzmann 

approximation were used to solve all the equations governing the EOF in a two-dimensional Y-shape three-way 

microchannel. When comparing the analytical and numerical results, approximated equations of the analytical side 

possessed noticeably high accuracy and outperformed the numerical side in approximating the EOF rate at 

considerably lower computational efforts. 
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INTRODUCTION:  
The electro-osmotic flow (EOF) inside microchannels 
is based on (and influenced by) the electrical double 
layer. When studying the behavior of an electrolyte 
solution, it can be seen that if the microchannel’s solid 
walls are positioned adjacent to this solution, while the 

wall is charged, the electrostatic charges on the wall-
fluid interface attract the counter ions and repel co-
ions. As a result, the counter ions accumulate in the 
vicinity of the microchannel’s wall and, thereby, form 
a layer termed the Stern layer, with a thickness of 
approximately less than 1 nm. Close to the Stern layer, 
there is a layer termed “Diffuse Layer” or “Gouy–
Chapman” where the concentration of counter ions and 
co-ions on the wall is equal. The diffuse layer varies in 
thickness from a few nm to a few μm [1]. The electric 
potential at the solid-liquid interface is a key 

parameter in the arrangement of the charges. 
In the literature, most studies on EOF have assumed a 
uniform charge density on the walls (see, e.g., Yang et 
al. [2, 3], Zheng et al. [4], Kang et al. [5], Ren and Li 
[6]). These studies advocate that the density of charge 
on the wall markedly influences the EOF 
characteristics. However, having a constant charge 
density on the wall is ideal, but difficult to attain in 
practice. Thus, the results of such research cannot be 
well matched with what happens in the real world. 
Some studies have explored the effects of the non-

uniform distribution of surface charge on EOF. In their 
numerical and experimental research, for example, 
Ren and Lee [6] studied the EOF inside a circular 

channel possessing axial changes of the surface charge. 
In a numerical study, Fou et al. [7] examined the 
effects of a step change in the surface area of the EOF 
and employed the Nernst-Planck equation to determine 
the concentration of ions in the EOF. 
Some studies have numerically simulated the EOF 
using the Lattice Boltzmann Model (LBM). For 
example, Tang and Lee [8] analyzed the EOF in a flat 

microchannel under uniform and non-uniform surface 
charges. They proposed an LBM (based on the thermal 
model of Hay et al. [9]) to solve the Poisson-
Boltzmann equation. The study by Tang and Lee was 
later expanded elsewhere to simulate the non-
Newtonian EOF in a flat microchannel in the presence 
[10] and absence [11] of an external pressure gradient. 
Wang et al. [12] proposed a new LBM to solve the 
nonlinear Poisson-Boltzmann equation and used the 
proposed model to simulate an EOF in a flat 
microchannel [13], in a two-dimensional porous 
medium (under obstacles with the regular array) [14], 

and a three-dimensional porous medium (under 
obstacles with the irregular and stochastic array) [15]. 
Elsewhere, Wang et al. [16] studied how an EOF can 
be influenced by roughness and regular cavity on the 
surface of the wall. Likewise, Chai and Shi [17] 
simulated the EOF in a flat microchannel by proposing 
a new LBM with the Poisson-Boltzmann equation. 
In the LBM, since the fluid and its model are assumed 
to be microscopic, the fluid flow is analyzed using the 
particle distribution function (PDF). Using a PDF that 
shows the potential presence of fluid particles in a 
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place allows the LBM to solve the simplified quasi-
linear Boltzmann equation instead of solving the 
nonlinear Navier-Stokes equation. This considerably 
simplifies the formulation and enhances parallel 
processing. However, the LBM comes with some 
shortcomings, such as using the Cartesian grid and a 
larger number of unknowns compared to the Navier-
Stokes equation. Due to these shortcomings, the 
boundary conditions of the PDFs have become a 

worth-exploring facet of the LBM. 
A variety of boundary conditions have so far been 
proposed for the LBM in the solid-fluid interface, of 
which the Bounce-Back model is well established [18] 
and is a simple and accurate technique [19]. To 
improve the accuracy of this boundary condition, there 
are multiple ideas proposed, such as relocating the 
boundary from the node to the interface of two nodes 
[19], a bounce back on the non-equilibrium section 
[20], the thermodynamic equilibrium of distribution 
functions around the assumed velocity and density 

values [21], and the extrapolation of distribution 
functions [22]. 
Since the LBM is initially designed based on a 
Cartesian grid, the curvilinear boundaries of a 
hypothetical problem can maximally be proposed with 
a series of broken lines that challenge the physical 
integrity of the boundary and its peripheral flow. 
Despite its significance in solving the Boltzmann 
equation algorithm in the curvilinear coordinate 
system [23], the LBM’s simplicity in the Cartesian 
grid has provoked researchers to run curvilinear 

boundaries in the Cartesian grid. Filippova and Hanel 
[23] are probably the first who model the curved 
boundary in the Cartesian grid using the Bounce-Back 
model and extrapolating the distribution functions 
proposed in [24]. This model is overwhelmed by 
instability, though this problem was then largely 
solved by Mei et al. [25, 26]. Bouzidi et al. [27] 
proposed a simpler boundary condition based on the 
Bounce-Back model to model the curved boundaries. 
This model merges the Bounce-Back model and 
extrapolation and is merely applicable to steady 

boundaries. 
Using the Cartesian grid in the LBM allows the nodal 
grid not to unavoidably coincide with the curved 
boundary when hitting the curved boundaries. Under 
this condition, the distance between the boundary and 
the nodal points pivotally determines the equation 
governing the boundary condition, particularly when 
extrapolating or interpolating distribution functions. 
As such, there are two different equations governing 
the distribution function, and the unknown variable is 
variably proportioned to the distance of the curved 
boundary from the nodal points. 

Due to its advantages over the other solvers of the 
Navier-Stokes equation, researchers mostly use the 
LBM to solve other nonlinear differential equations 
governing physical phenomena that can be used in 
overall geometries (e.g., curved boundaries) [28-30]. 
However, in most studies, curved boundary 

simulations are particularly conducted for fluid flow 
and relevant concepts [31-33]. 
In the microscopic boundary condition, the 
macroscopic property of extrapolation should be 
applied to the boundary points, which will differ based 
on the concerned physical phenomenon and its 
governing equation. For fluid flow and the Navier-
Stokes equation, there is a new model proposed based 
on Zou et al. [34] that assigns a specific velocity to the 

boundary points. This model can be applied in all 2-D 
geometries and its design ensures no slip at nodal 
points. 
Today, with the overuse of microsystems in biology, 
fuel cells, and laboratory chips, EOFs have become an 
effective way of fluid transfer. A leading flaw of 
common designs of electroosmotic micropumps is a 
need for very high voltages for pump running that can 
influence the flow contents. Takamura et al. [35] 
innovatively developed a cascade of low-voltage micro 
pumps to achieve the intended flow at a lower voltage. 

The present research simulates an EOF inside a Y-
shaped three-way microchannel and numerically 
investigates the switching process of the EOF and the 
parameters affecting this process. In the past, research 
has explored EOF control by the external electric field 
(EEF), but largely overlooked flow conditions before 
and after the switching process and its associated 
parameters. This research contains numerical and 
analytical analyses and compares the obtained results. 
The research is based on altering the voltage applied 
on the two ends of the microchannel and using 

electronic circuits, with no need for altering the flow 
medium. Thus, the fluid inside the microchannel is 
supposed to be under single-flow or full-flow 
conditions. In full-flow conditions, the electric field 
intensity and the EOF rate are equal for two branches 
of the microchannel. In turn, the EOF entering the 
microchannel is divided into two equal parts. In single-
flow conditions, the EOF only passes through the top 
branch, and thereby, voltage and flow rate are equal to 
zero for the bottom branch. In this research, three 
variables associated with EOF in the microchannel are 

investigated: 1) flow rate in both branches in the full-
flow condition, 2) voltage ratio (λ) required to stop 
EOF in the bottom branch, and convert the full-flow 
condition to the single-flow condition, and 3) flow rate 
in the top branch in the single-flow condition. 
Parameters k and α play a key role in the EOF rate and 
switching process. Furthermore, based on the study by 
Mohammadi Pour et al., this research uses equations 
governing EOF (i.e., continuity, Navier-Stokes, 
Laplace, and Poisson-Boltzmann) to solve the Poisson 
equation governing the electric potential. 

EOF simulation using the LBM and analysis of the 

results 

Geometry of the problem 
Three flat microchannels (each with a thickness of 30 

𝜇m a length of 90 𝜇m) are connected by a Y-shaped 
three-way (Figure 1). The developed assembly (210 

𝜇m in length) is adjacent to an electrolyte with ion 

number density (  ) and dielectric constant (  ). 
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Under this geometry, the walls are charged by 𝝃. The 
distance (d) between the two right walls, which here 
are termed top and bottom branches, respectively, is 

set at 30, 60, 90, 120, and 150 𝜇m. The surface charge 
on the microchannel walls alters the ionic arrangement 

in the electrolyte and forms an electrical double layer, 
ultimately forming an internal electric field in the 
vicinity of the walls. 
 

 
Figure 1. Geometry and boundary conditions for EOF through a Y-shaped three-way channel 
 

Governing macroscopic equations 
Based on the electric field theory, a Poisson equation 

correlates electric potential distribution ( ) in 

electrolyte adjacent to the wall ( ) to the net electric 

charge density (  ). In an electrolyte, “ e” is 
proportional to the numerical concentration of positive 

and negative ions [            ], where the 
concentration of these ions is obtained by solving the 
Nernst–Planck equation. 
As shown in Figure 1, the surface charge remains 
constant along the walls, indicating a significant 
alteration in ion concentration only in the direction 

perpendicular to the surface ( ). Here, the Nernst–
Planck equation is simplified as follows: 
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  (1) 
When integrating Eq. (1), assuming a point in the 
center of the channel where ions are naturally 
distributed and their concentration is equal to the mass 

density (  ) and electric potential (   ), the 

Boltzmann distribution will be as follows: 
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This microchannel is adjacent to an electrolyte with an 

ion number density of (  ) and dielectric constant of 

(  ). The surface charge on the microchannel walls 
alters the ionic arrangement in the electrolyte and 
forms an electrical double layer, ultimately forming an 

internal electric field in the vicinity of the walls. Based 
on the electric field theory, a Poisson equation 

correlates electric potential distribution ( ) in 

electrolyte adjacent to the wall ( ) to the net electric 

charge density (  ) [36]. 
By introducing the dimensionless rarefaction as 

(   
 

 
    

 

 
          

           ), and 

after removing the superscript (*) for simplicity, the 
Poisson equation governing the potential will be as 
follows: 
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Where (    ) is the dimensionless thickness of the 
electrical double layer and (

  
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) is the Debye-Huckel 

parameter. Regarding the boundary conditions of this 

equation (as shown in Figure 1), ( ) is the known 
values of walls, and variation in the electric potential 
gradient at the inlet and outlet of the microchannel is (

). 

( ) is the dimensionless external electric potential 

generated upon applying an EEF in two ends of the 
microchannel. After removing the superscript (*) for 
simplicity, it follows the Laplace equation below [36]: 
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The boundary conditions of the external electric 

potential are constant values of  and 

 at both ends of the microchannel, and the 

normal gradient in walls is zero (
0

m




 ), where m  

is perpendicular to the boundary. Applying an EEF in 
the microchannel will accumulate the ions close to the 
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charged wall, thereby enforcing the fluid. Applying 
this volumetric force in the momentum equation will 
generalize the Navier-Stokes equation as follows: 
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  (5) 

Where B =  is the ionic pressure to 
dynamic pressure ratio. The no-slip condition governs 
the walls, and the pressure at both ends of the 
microchannel is set at zero, in line with the working 

conditions of most laboratory chips [37]. 

The boundary conditions of the problem 
Regarding the boundary conditions of this equation (as 

shown in Figure 1), (
 

) is the known values of 

walls, and variation in the electric potential gradient at 

the inlet and outlet of the microchannel is (
0

x




 ). 

The EEF (Φ) is applied through electrodes to both 
ends of the microchannel. The distribution of this field 
inside the microchannel follows the Laplace equation. 
The EEF’s boundary conditions are as constant values 

of Φ (at inlet), up
 at the end of the top branch, 

down
 at the end of the bottom branch, and normal 

gradient of zero (
0

x




 ) on walls. Applying an EEF 
in the microchannel will accumulate the ions close to 
the charged wall, thereby enforcing the fluid. Applying 

this volumetric force in the momentum equation will 
generalize the Navier-Stokes equation. In this 
research, the EOF path is determined by altering the 
intensity of voltage applied at both ends of the 
microchannel. For this, the EOF is considered to be 
either single or full. 

Analysis of the full EOF 
Under this condition, the same voltage (

0down up   
) is applied to the end of both 

branches, while the voltage applied to the inlet of the 

microchannel equals ( 0 refE L 
), where L is the 

distance between both ends and is 210 𝜇m. Under this 
condition, the EEF’s intensity is equal in both 
branches and, thereby, both branches convey the same 
rate of EOF. In turn, the inlet flow is divided into two 
equal parts when approaching the three-way to leave 
the solving space through branches. 

Analysis of the single EOF 

Under this condition, the EOF only passes through the 
top branch. However, due to geometric symmetry, the 
results can also be generalized to the bottom branch. 
Here, the voltage at the end of the top branch and inlet 
of the microchannel equals respectively to (

, 0ref upE L    
). To achieve a single EOF, the 

voltage at the end of the bottom branch should be 
adjusted to attain an EOF rate of zero in this branch. 

This voltage ( ) is shown proportional to the inlet 
voltage as follows: 

0

down 





  (6) 
This research aims to approximate three fundamental 

quantities of the EOF passing the three-way: 1) EOF 
rate in both branches in the full condition, 2) voltage 
ratio (λ) required to stop EOF in the bottom branch and 
convert full condition to single condition, and 3) flow 
rate in the top branch in the single condition. 

Approximate analytical solution 
The EOF simulation by solving the governing 
equations is discussed in the next section. However, 
solving the governing equations needs huge 
computational efforts, particularly when it comes to 
the design of micro-electromechanical systems. 

The aim, here, is to attain an analytical solution to 
approximate single and full EOF conditions by 
defining some assumptions. Before introducing these 
assumptions, first suppose an EOF in a flat and straight 
microchannel that conveys an EOF that is highly 
developed in terms of ion density, velocity, and 
electric potential. Also, the electrical double layers on 
both sides of the microchannel do not interfere. 
Suppose the walls’ surface charge is uniform along the 
microchannel’s length and the corresponding electric 
potential is less than 30 mV, then solving the 

governing culminates in the velocity profile below [6]: 

 
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kH

  
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   

    (7) 
Eq. (7) is a “precise” analytical representation of the 
flow conditions in a straight microchannel. The 
approximation here is to apply Eq. (6) to the straight 
parts of the concerned geometry (Figure 1). Thus, Eq. 
(7) can be rewritten as follows, based on the 

definitions of dimensionless rarefaction: 

 

 

cosh / 2
( ) 1

cosh / 2ref ref

ky kHu E
u y

u E kH

 
    

    (8) 
In the straight microchannel, the EEF’s intensity (E) 

and the reference field (    ) are equal. Thus, the term 

(      ) in a microchannel is equal to the reference 

field and Eq. (8) is the dimensionless form of Eq. (8). 
However, in the concerned geometry, the EEF’s 
intensity in each of the microchannel’s straight 
sections can differ from the reference EEF’s intensity. 
Other assumptions to attain the analytical solution are 

as follows: 

 Regardless of the flow conditions where the 
flow direction alters due to geometrical 
changes, the EOF’s condition (separately) in 
entry and branches is nearly developed and 

supposed to be uniform. 

 The effects of change in pressure due to EOF 
direction change are overlooked. 
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By assuming degrees of error for the above 
assumptions, the EOF will be analytically studied 
around four key sections shown in Figure 2: Section A 
(at the microchannel entry), Section B (at the center of 
the microchannel), Section C (at the entry of the top 
branch), and Section D (at the end of the top branch). 

Likewise, sections E and F can be defined for the 
bottom branch, corresponding to sections C and D (in 
the top branch). In the rest of this article, all the 
quantities of these sections or their intermediates are 
denoted by relevant subscripts. 

 
Figure 2. Sections in the approximate analytical solution of an EOF in a Y-shaped three-way microchannel 
 
Note that each parameter that influences the reference 
velocity (e.g., surface charge, dielectric constant, etc.,) 
will also influence the EOF’s ultimate condition. 
However, to maintain the results to be generalizable, 

we discuss dimensionless variables, such as voltage 
ratio (λ), dimensionless flow rate (Q*), and 

dimensionless distance between branches (

d

H
 

). 
 

Analysis of full EOF by the equivalent electric 

circuit 
Since a Laplace equation governs the external electric 
potential, we can use the equivalent circuit theory to 
quantify the EOF intensity in the microchannel’s 

straight sections [38]. Based on this theory, the 
microchannels that convey an EEF are modeled as a 
resistance proportional to the microchannel’s length 

(L) and inverse of its width (H) (

L
R

H


). The 

geometry shown in Figure 2 will be approximated with 
a similar electric circuit shown in Figure 3. This 
approximation supposes the EEF to change one-
dimensionally. Obviously, this approximation fails to 
elucidate transverse variations in the EEF, particularly 

where the direction alters. However, based on the 
above assumptions, we can use an equivalent circuit 
regardless of transverse variations in the EEF’s 
intensity. 

 
Figure 3. The equivalent electrical circuit used to calculate EEF for full-flow condition 
 
For the geometry shown in Figure 1, the following 
geometrical equations are established: 

AB BC CD BE EFH H H H H H    
 

3.5AB CD EFL L L H  
 

( ) / 2 (1 ) / 2 1,2,3,4,5BC BEL L H d H      
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By solving the electrical circuit given in Figure 3, the 
EEF’s intensity in the AB part is calculated as follows: 

28

22

B A

AB ref

AB

E E
L

 




 


  (9) 

Using “ ” instead of “=” in Eq. (9) and the following 
equations implies that the extracted equations are 
based on a set of simplifying assumptions. By 

incorporating Eq. (9) in Eq. (8) and then integrating it, 
the EOF rate in the AB part will be quantified. 
The EOF rate is similar for both branches for the full-
flow condition, as follows: 

14 tanh( / 2)
1

22 / 2
up down

k
Q Q

k

   
   

     (10) 

Analysis of single EOF by the equivalent electric 

circuit 
In the single flow condition, the EOF rate in the branch 
is zero. To attain this condition, the EEF’s intensity 
needs to be zero. In turn, the voltage applied at the end 

of this branch ( down
) should be equal to (BΦ). This 

equivalent electrical circuit in the single-flow 
condition is depicted in Figure 4. 

 
Figure 4. The equivalent electrical circuit used to calculate EEF for single-flow condition 
 
By solving the equivalent electrical circuit (Figure 4), 
the voltage ratio required to stop EOF in the bottom 
branch is calculated from Eq. (11): 

0

8

15

down B

A

  


  


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
  (11) 

In this condition, the EEF’s intensity in the AB part is 
as follows: 

14

15

B A

AB ref

AB

E E
L

 




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
  (12) 

By incorporating Eq. (12) in the velocity distribution 
equation (Eq. 13), the EOF rate at the inlet and in the 

top branch is obtained as follows (note that, all the 
EOF is conveyed through the top branch): 

* 14 tanh( / 2)
1

15 / 2
up in

k
Q Q

k

  
   

     (13) 

Findings 

Detection and analysis of voltage ratio (λ) for EOH 

switching 
In this research, the flow bed is assumed to be of the 
same material. Thus, the surface charge due to the 

vicinity to the electrolyte is constant on all the surfaces 

and equals to (


). Figure 5 depicts the distribution of 
the internal electric field under this surface charge. 

Table 1 presents fluid parameters and properties used 
in the simulation. 

 
Figure 5. Distribution of electric field caused by the presence of electrodes at both ends of the microchannel 
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Table 1. Constants and properties of the fluid in EOF 

simulation 

Parameter Value (unit) 

 
5.15 

 
1, 2, 3, 4, 5 

 
80 

 
-25 (mV) 

 
-30 (V/mm) 

 
1×10

3
 (kg/m

3
) 

 
1×10

-3
 (Pa.s) 

 
Dimensionless contour lines (Φ) in full-flow condition 
are shown in Figure 5 for α = 1. As shown, the 
distribution of contour lines (Φ) changes one-
dimensionally in the microchannel’s inlet and both 

branches, but it changes two-dimensionally in the 
interface of both branches, at the distance of 90 to 120 

𝜇m. As depicted in Figure 5, variations in EEF 

intensity ( ) differ between the microchannel’s 
inlet and the outlet branches, with variations in Φ 

values in the inlet area that are almost twice that in the 
outlet branches. We can easily justify this change with 
the equivalent electric circuit. 

Determination of EOF velocity and rate in full-flow 

condition 
By using the results of EEF (Φ) and internal electric 

field (𝜓) in the flow solution, the velocity field in the 
full-flow conditions is based on Figure 6. As shown, 
under this condition, the same volume of flow passes 
through both branches, where each branch conveys 
half of the inlet flow. 

 
Figure 6. Velocity vectors in full-flow condition for 𝑘 = 15 and 𝛼 = 1 
 
If increasing the boundary condition for voltage in the 

bottom branch with      steps, and continuing 

simulation in each step to attain a steady state, then the 

flow rate at the inlet (Qin), top branch (Qtop), and 
bottom branch (Qdown) will be calculated by integrating 
velocity distribution in each step. 
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Figure 7. Variations in flow rate for varying voltage at the end of bottom branch for 𝑘 = 15 and 𝛼 = 1 

 

As shown in Figure 7, ( 0

0down



) is the same for the 

EOF passing the branches and equals half the inlet 

flow rate. By increasing the voltage ratio ( 0

down


), the 

flow rate is reduced in the bottom branch and 
increased in the top branch. These changes ultimately 

reduce the inlet flow rate. Considering linear changes 
in flow rate for variations in the voltage ratio, we can 
calculate the voltage ratio (λ) required to stop EOF in 
the bottom branch by interpolation. 

Having λ = 0.5616, as shown in Figure 7 (for 𝑘 = 15 

and 𝛼 = 1), with a rise in λ, the flow rate will be 
negative in the bottom branch, indicating reverse flow 
pumping in this branch. Now, λ is determined, but it 
requires further validation by re-simulating flow 
condition with the following boundary conditions: 

0 0, 0,ref up downE L        
 

Figure 8 shows the distribution of the electric field due 
to the boundary condition, where variations in Φ in the 
bottom branch are zero. Thus, no volumetric force is 
applied to the flow when the internal electric field is 
adjacent to this branch. 

 
Figure 8. Dimensionless contour lines in the single-flow condition for 𝛼 = 1 
 

Determination of flow velocity and rate in the 

single-flow condition 
Figure 9 demonstrates velocity distribution in the 
single-flow condition. As shown, by applying the 

value of λ obtained from interpolation, the flow rate in 
the bottom branch is zero. Thus, the λ value obtained 
through interpolation is true and considered the 
numerical analysis result. 
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Figure 9. Velocity vectors in the single-flow condition for 𝑘 = 15 and 𝛼 = 1 
 
Table 2 presents values obtained from numerical 
simulation and approximate solving. 
 
Table 2. The λ value required to stop EOF in the bottom 
branch 

𝛼    
1 0.5616 0.5612 0.5625 

2 0.5914 0.5886 0.5882 

3 0.6160 0.628 0.6111 

4 0.6375 0.6340 0.6316 

5 0.6566 0.6532 0.6500 

 
As given in Table 3, the flow rate in the top branch is 
investigated for full-flow and single-flow conditions.  
Table 3. EOF rate in the top branch in the full-flow 

condition for 𝑘 = 5 

𝛼 
Numerical 

solution ( )  Error (%) 

1 0.3920 0.3685 6.0 

2 0.3730 0.3531 5.3 

3 0.3571 0.3390 5 

4 0.3429 0.3260 4.9 

5 0.3295 0.3139 4.7 

 
Tables 4 to 6 compare the results of numerical 
simulation with the results for dimensionless 

parameters of the electrical double layer thickness for 
k = 5 and k = 15. 
  
Table 4. EOF rate in the top branch in the single-flow 

condition for 𝑘 = 5 

𝛼 
Numerical 

solution ( )  Error (%) 

1 0.5640 0.5297 6.1 

2 0.5264 0.4985 5.3 

3 0.4953 0.4708 4.9 

4 0.4683 0.4461 4.7 

5 0.4440 0.4237 4.5 

 
Table 5. EOF rate in the top branch in the full-flow 

condition for 𝑘 = 15 

𝛼 
Numerical 

solution ( )  Error (%) 

1 0.5667 0.5275 6.9 

2 0.5428 0.5056 6.9 

3 0.5203 0.4853 6.7 

4 0.4992 0.4667 6.5 

5 0.4796 0.4494 6.3 

 
Table 6. EOF rate in the top branch in the single-flow 

condition for 𝑘 = 15 

𝛼 
Numerical 

solution ( )  Error (%) 

1 0.8151 0.7583 7 

2 0.7646 0.7137 6.7 

3 0.7201 0.6741 6.4 

4 0.6802 0.6386 6.1 

5 0.6443 0.6067 5.8 

 
With a maximum error of 7%, the results can 
accurately predict the flow rate in the branch under 

full-flow and single-flow conditions. Furthermore, a 
reduction in relative error occurs when the distance 
between the two branches (α value) is increased. This 
behavior can be attributed to the assumptions defined 
when extracting the equations, where the flow in each 
interface is considered to be one-dimensional. With 
increasing α and as the branches approach each other, 
the flow will be highly two-dimensional in the three-
way, whereas the one-dimensional approximation error 
will increase. 

Conclusion 
This research analytically and numerically studied the 
switching process of an EOF in a Y-shaped three-way 
microchannel. Analytically, by introducing some 
assumptions, the flow in the straight part of the three-
way was supposed to be one-dimensional. By using the 
equivalent electric circuit theory, an approximate 
solution was extracted for the voltage ratio and the 
flow rate in the branches before and after the switching 
process. Next, the flow condition was simulated by 
numerically solving the governing equations and 
recalculating the intended parameters. When 

comparing the numerical and approximate results, it 
was found that the approximate solution is accurate in 
predicting the voltage ratio needed for the switching 
process and calculating the flow rate passing through 
the branch before and after the switching process. Due 
to the low computational effort required and high 
accuracy, approximate solutions outperform numerical 
solutions to solve governing equations and, thereby 
can be viewed as potent tools in designing micro-
electromechanical systems. 
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