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ABSTRACT:  
The remotely operated vehicle, abbreviated as ROV, is a group of underwater vehicles that are made of various types 

and used for various applications. On the other hand, the non-linear dynamic model and time-varying system, the 

existence of uncertain parameters in the model, and the presence of uncertain environmental disturbances are among 

the challenges we face when controlling the submarine robot, so designing a suitable controller through which the 

submarine robot can It is very important to reach the set speed. Normally, the determination of hydrodynamic 

coefficients of the model is done by advanced laboratory equipment, but due to its high cost, the computational fluid 

dynamics technique can be used to obtain hydrodynamic coefficients. In this thesis, a control structure is proposed that 

can properly control the speed of the remotely operated vehicle by using the PID controller along with the genetic 

optimization algorithm. 
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INTRODUCTION:  
Over the past few years, intelligent and autonomous 
underwater robots have emerged in the form of many 

applications in various industries. Their role is vital in 
the military industry to find mines, in fisheries and 
oceanography to explore the sea environment, in the 
oil industry to monitor and locate oil and gas leaks, 
etc. [1]. 
Previous studies have proven that submarine trajectory 
tracking is of particular importance due to the 
nonlinear nature of the problem and operational 
applications in the marine industry. The use of 
intelligent underwater robots in various projects under 
the sea has led to the complexity of their structure as a 

marine vehicle. Also, the application of these vehicles 
in various and difficult operations such as deep seas, 
glaciers, etc. makes it difficult for the owners and 
users to preserve and maintain them [2-3]. 
The dynamic equations in submarines are nonlinear 
time variants. This is one of the complications of 
designing controllers. It is difficult to derive these 
equations due to the presence of water currents and 
hydrodynamic damping effects and the many 
uncertainties in the sea environment. As a result, 
classical controllers cannot easily handle these 
conditions. In many different industries, it is 

customary to rely on guided and controlled equipment 
without the direct intervention of human force and 
remotely. For the first time, Ortis and Parenza 
investigated ways to increase the reliability and safety 
of intelligent underwater robots. They proposed two 
protective layers (critical layer and inhibitor layer) for 

intelligent underwater robots. In the critical layer, the 
underwater robot is saved from the critical situation. 
Subsequently, in the inhibitor layer, the necessary 
command to save before reaching a critical situation is 
issued by the computer [7]. In [8], Madsen investigated 
and identified possible defects in underwater robots 

and presented a logical diagram of underwater robot 
defects. In [9], Clayton and Gowar investigated the 
maintenance methods of various propulsion systems in 
intelligent underwater robots. They also investigated 
the energy systems and the possibility of their failure 
as the main cause of the lack of power supply to the 
propulsion system. Pouder et al. [10] studied 
increasing the reliability of the intelligent underwater 
robot called Dorado. They also investigated the defects 
that occurred in the desired underwater robot for a 
specific operating time (from 1 to 300 hours). Strutt et 

al. [11] studied the cause of the loss of the automatic 
underwater robot (AUTOSUB) in the waters of the 
areas covered by the glaciers [12]. In [13], Needham 
presented a fault tree for the controller system software 
in an intelligent underwater robot. It also examined the 
mathematical relations of the inter-influence of nodes 
in this tree and introduced the corresponding solution 
to increase safety. A research group from Southampton 
University studied common defects in smart 
underwater robots. A total of ten reports were 
compiled, including sixty-three defects and the 

estimated probability of occurrence for each [14]. 
Griffiths discusses risk management and the possibility 
of failure of various parts of an autonomous 
underwater robot in marine operations. Most of the 



 IISJ: July-August-September 2024                                                                                                                Page | 501  
 

 

failures are related to the construction and connection 
stages of underwater robot components. Also, the 
reliability criterion of the system was defined based on 
the distance traveled [15]. Zhang first presented the 
fault tree of a submarine and analyzed the reliability of 
the intelligent underwater robot based on the fuzzy 
fault tree. Uncertainty is included in the component’s 
failure rate [16]. 
One of the most common controllers in most industries 

is the PID controller [3]. This controller can be used as 
an independent unit or as part of a distributed 
computer controller system. Adjusting the PID 
controller parameters to realize desired objectives is 
challenging. Conventional methods are often 
unsuccessful in adjusting PID controllers. One of the 
methods of adjusting the PID controller is to use 
evolutionary algorithms. These population-based 
algorithms look for the optimal solution by relying on 
their random search process. A genetic algorithm is a 
special type of evolutionary algorithm that uses 

evolutionary biology techniques such as inheritance, 
mutation, and Darwin's selection principles to find the 
optimal formula for predicting or pattern matching. 
Genetic algorithms are often a good choice for 
regression-based forecasting techniques [17]. 
Natural evolution embedded in genetic algorithms 
(GAs) is a global search method used for optimization. 
PID controllers have been widely used to control 
systems. However, the selection based on observation 
and experimental setting of Kp, Ki, and Kd parameters 
makes it difficult to realize parameter optimization [4]. 

To obtain better performance, the actual output must 
match the target output. For this purpose, a separate 
controller is required. One of the basic problems of 
using a controller is setting the parameters. In recent 
years, various methods have been proposed to adjust 
PID parameters. The conventional methods for 
adjusting the PID controller parameters are the 
Ziegler-Nichols oscillation method, the Ziegler-
Nichols reaction curve method, and the Cohen-Coon 
reaction curve method. However, recent trends show 
that an effective improvement in parameter setting can 

be achieved by evolutionary algorithms. These 
computational algorithms provide better results after 
completing each iteration. Conventional computational 
algorithms include ant colony optimization, particle 
swarm optimization, and genetic algorithm. These 
methods are based on the behavioral patterns of living 
organisms [5-8]. 
Remotely operated vehicles (ROVs) play a vital role in 
the search, management, and repair of underwater 
structures related to the oil industry, especially at great 
depths that are difficult to access. Two important 
capabilities of industrial ROVs include orientation and 

dynamic positioning. By definition, the ROV must be 
able to remain in a specific location for a specified 
period [18-20]. Also, the dynamic and changing nature 
of the underwater environment due to the presence of 
waves at shallow depths causes significant 
disturbances in the vehicle's performance. In this 
research, the PID controller adjusted with the genetic 

algorithm is used to control the ROV system. The key 
objective is to control the speed of the submarine robot 
optimally. PID controller makes it difficult to control 
such processes. A more sophisticated controller such 
as dead-time compensation or a predictive controller is 
generally required. Damping processes with complex 
conjugate poles close to the assumed axis are difficult 
to control with a PID controller. Processes with such 
dynamic characteristics are rare in chemical processing 

industries. However, this is common in mechanical or 
robotic systems consisting of flexible structures [9-12]. 
In practical conditions, most underwater industrial 
robots use PD or PID controllers [7-9]. The reason for 
this is the simple and efficient structure of such 
controllers in certain conditions. Typically, pseudo-
PID controllers perform well. At the same time, these 
controllers do not pay attention to the nonlinearities of 
the system, which in turn causes the destruction of the 
efficiency and even the instability of the system. 
Researchers in [10] have used the PID approach for 

speed control. Since the linearization requires a vehicle 
model, the parameters of the robot were identified and 
used. The results of swimming pool simulations and 
tests have proven the ability of this controller to 
control the depth logically. An adaptive control law for 
underwater vehicles is proposed in [11, 12], which 
consists of a PD procedure and a suitable adaptive 
agreement procedure. In this law, the agreement 
procedure examines the hydrodynamic effects 
affecting the routing efficiency. Also, two automatic 
pilot systems with the ability to adjust automatically 

have been proposed in [13]. The first one is an online 
two-dimensional linear controller. The latter uses a 
stable control law based on the first-order 
approximation of open-loop dynamics and recursive 
online identification. 
The dynamic equations in submarines are nonlinear 
time-variant. This is one of the complications of 
designing controllers. Deriving these equations is 
challenging due to the presence of waves, 
hydrodynamic damping effects, and high uncertainties 
in the sea environment. As a result, classical 

controllers cannot easily handle them. As a result, the 
proposed controller in combination with the genetic 
algorithm can guarantee the stability of the robot to 
some extent. In light of the above, this research aims to 
design a PID controller based on a genetic algorithm to 
control the speed of an ROV underwater robot. 

Proposed method  

Industrial PID algorithm 
In this section, the structure of the time-continuous 
PID controller is described. The purpose of the PID 
controller is to measure the process error e and 
calculate the action u. Although u is considered as the 

input of the process, it is also considered the output of 
the controller. 
The equation of the time-continuous PID controller is 
formulated as follows: 

1
( )c d

i

de
u K e edt

dt



  

 

(1) 
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where the three regulator constants are the 

proportional gain of the controller ( cK
), the integral 

time constant ( i ), and the derivative time constant (

d ). The time unit of two other constants for 
industrial applications is often considered as "minute". 
The Laplace transform of the ideal PID controller in 

Relation (1) is defined in the form of Relation (2). 

( ) 1
( ) (1 )

( )
c d

i

U s
C s K s

E s s



   

 

(2) 

Figure (1) of the PID controller is also called parallel 
PID form. We arrange the Relation (2) in the form of a 
conventional pole-zero transfer function in Relation 
(3). 

2( 1)
( ) c i d i

i

K s s
C s

s

  



 


 

(3) 

The PID controller is not ideal. The order of the 
numerator of the fraction (2) is greater than the order 
of the denominator of the fraction (1). We have a pole 

in S 0 . When we want to build such controllers, we 

physically need a suitable transfer function. Therefore, 
we need to slightly change the ideal PID transfer 
function. The PID transfer function in Relation (2) 

contains a pure derivative term with d s
. Such a term 

cannot be implemented physically. A change in the set 
point leads to a large change in the manual variables. 
The PID block diagram is represented in Figure (1). 

 
Figure (1): PID block diagram [7] 
 
Many approximations have been proposed in 

commercial controllers to address derivative problems. 
Most schemes simply add a minor factory lag term to 
the derivative term. Therefore, instead of using the 

derivative term d s
, Relation (4) has been used. 

1

d

d

s
derivative term

s
N







 

(4) 

where N is a large value ranging from 10 to 100. By 
using this derivative term, the PID transfer function 
related to Relation (2) or Relation (3) is modified as 
follows. 
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1
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(5) 

 
The Relation (5) can be realized physically. When 

N  , the PID controller related to Relation (6) 

converges to the state of Relation (4). The PID 
controller with the derivative filter of Relation (3) is 

reduced to the PI controller if 
0d 

. 

Another form of series PID controller is sometimes 
used according to Relation (6). 

' ' '

'

1
( ) (1 )(1 )c c d

i

G s K s
s




  

 

(6) 

where the constants of the series PID controller 

' ' ', ,K
c i d
 

 correspond to the constants of the main 

PID controller 
, ,c i dK  

. A block diagram of the 

series PID controller is represented in Figure (2). 

 
Figure (2): A series PID controller [7] 

 
The series PID controller defined in Relation (6) can 

be represented in parallel form as follows [1]: 
' ' ' '

' ' '

' ' '
, ,i d i d

c c i i d d

i i d

K K
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   
  


   


 

(7) 

However, the reverse is not required. 

' (1 1 4 / )
2

  
K

cK
c d i

 
 

(8) 

' (1 1 4 / )
2

  i
i d i


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(9) 

' (1 1 4 / )
2

  i
d d i


  

 

(10) 

The series form can only be realized when 
4i d 

. 

For this reason, the series form of the PID controller is 
less commonly used. Note that both forms are similar 
when the derivative part is not used. 
Genetic algorithm 
A genetic algorithm is a search algorithm based on 

natural selection and genetic characteristics. The GA 
method is a computational algorithm inspired by the 
genetics of the human body. After each iteration, a 
better result is expected. The error of the results is 
constantly evaluated. The best solution is considered 
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for the next iteration based on the selection criteria. 
GA randomly generates the initial population of PID 
controller parameters based on the calculation of 
selection, cross-over, and mutation. Therefore, the 
values of the controller parameters are optimized. The 
value of the mean square error (MSE) is included as an 
efficiency criterion. The general principles of the 
algorithm of this software are based on the principles 
of the genetic algorithm. The general steps of the 

genetic algorithm are as follows: 
 Random generation of an initial population of 

solutions including n chromosomes 
 Examining the fitness function for each 

chromosome in the population (usually the fitness 
function is proportional to the inverse of the 
squared error. A solution with a small squared 
error has a high fitness value).  

 Creating a new population based on repeating the 
following four steps:  

o Selection of two parent chromosomes 

from a population based on their fitness.  
o Applying the cross-over operator on the 

parents to create new children (that is, 
generating the next generation of 
solutions from among the existing 
solutions).  

o  Considering the possibility of mutation 
and change of children to produce the 
next generation of solutions.  

o Replacement of new children in the new 
population. 

 Using the new population for the next iterations of 
the algorithm.  

 Stopping the algorithm if the termination 
conditions are fulfilled (such as the algorithm 
execution time, the number of generated 
generations, the objective function reaching a 
certain threshold, the convergence of the error 
criterion, and others). 

Simulation and results 
In this section, the simulation results of PID controller 
design for speed control for an underwater robot 

system are presented. Subsequently, the simulation 
results related to the adjustment of the PID controller 
parameters based on the genetic algorithm are 
presented. Finally, the simulation results of the two 
scenarios are compared. The parameters of the 
Coxswain underwater robot are presented in the 
following tables. 
 

Table (1): hydrodynamic parameters [1] 
1

| | 0u uX kgm 
 

29uX kg 
 

172uX kgs  
 

1

| | 0v vY kgm 
 

30vY kg 
 

177vY kgs  
 

1

| | 0w wZ kgm 
 

90wZ kg 
 

195wZ kgs  
 

1

| | 0p pK kgm 
 

5.2Kp kgm 
 

140Kp kgms  
 

| | 0q qM kgm
 

7.2Mq kgm 
 

130Mq kgms  
 

| | 0r rN kgm
 

3.3rN Kgm 
 

130rN Kgms  
 

 
Table (2): moment of inertia [1] 

20xy yxI I Kgm 
 

21.32xxI Kgm
 

20yz zyI I Kgm 
 

22.08yyI Kgm
 

20yz zyI I Kgm 
 

22.32zzI Kgm
 

 
Table (3): center of gravity and center of buoy [1] 

Center of buoy Center of gravity 

0Bx m
 

0Gx m
 

0By m
 

0Gy m
 

0.1Bz m 
 

0Gz m
 

 
Table (4): Position of propellers [1] 

Rear right Rear left 

2 0Fx m
 

1 0Fx m
 

2 0.215Fy m
 1 0.175Fy m 

 

2 0.1Fz m 
 1 0.1Fz m 

 
Vertical (F4) Sideways (F3) 

4 0.022Fx m 
 

3 0.135Fx m
 

4 0Fy m
 3 0Fy m

 

4 0FZ m
 3 0.07Fz m

 
 
Table (5): Coxswain robot parameters [1] 

31024Kgm 
 

98.5m kg
 

29.81g ms 
 

 
The parameters of the Coxswain hydrodynamic model 
are set as follows [1]: 

A- Matrix M 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

u

v

w

xx p

yy q

zz r

m X

m Y

m Z
M

I K

I M

I N

 
 


 
 

  
 

 
 

    
B- Matrix C 
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0 0 0 0

0 0 0 0

0 0 0 0
( )

0 0 0 0

0 0 0 0

0 0 0 0

v

u

v u

u yy q

zz r yy q

yy q xx p

m Z mv Y v

m Z mu X u

mv Y v mu X u
C v

mu X u I q M q

I r N r I q M q

I q M q I p K p





 

 

   
 

  
 
   

  
    

   
 

     
C-Matrix D 

| | | | | | | | | | | |( ) [ | |, | |, | |, , , | |]u u u v v v w w p p p q q r r rD v diag X X u Y Y v Z w K K M N N r     
 

D-Vector 
( )g 

 

0

0

0
( )

y

z z

x y

g
BG Wc s

BG Ws BG Wc

BG Wc s BG Ws


 

 

  

 
 
 
 

  
 

 
 
     

where 

 [ ] , ,
TT

x y z G B G B G BBG BG BG BG X X Y Y Z Z    

 and 
cos , sinc s    

. Also, the weight of the 

robot is defined as 
W mg

 where g is the 

gravitational acceleration constant. 

Simulation results of speed control of an 

underwater robot system 
This section presents the simulation results of the 
conventional PID controller and PID controller 
adjusted by a genetic algorithm to control the speed of 
the ROV underwater robot. The key objective here is 
speed control. The speed value changes from an initial 
state to a final state. It is assumed that the robot starts 

its movement with the initial speed and reaches the 
desired final speed equal to 

 [ , , , , , ] 1.1,0.1,1.3,1.4,1.5,1.4 [ / , / ]u vlinear w p q r m s rad s

. The objective is to reach the desired final speed. The 
proposed relation for speed control is presented in 
(11). 

2 2PID p d iC D g k v k v k v           
(11) 

where PID
is the PID controller vector and 

1 1 1( * * )vC J C M J J J

   
, 

1

1g J g


and 

desiredv v v 
is the speed error. The parameter 2 is 

obtained by solving the following relation. 
1

2 2 2( )( )M C D g         

  

(12) 

 
We can control the underwater robot by relying on 
these equations and the equations given in the second 
section. 

A. Speed control with conventional PID controller 
First, we set the parameters of the PID controller 
arbitrarily without optimization so that appropriate 
responses are obtained. The adjusted PID controller 
parameters are considered as follows. 

 

 

 

25 25 10 5 5 4

5 5 4 5 5 5

0.01 0.01 0.01 0.01 0.01 0.01

kp

kd

ki






 

The simulation time and time step size are set to 20 
and 0.01 seconds, respectively. The PID controller has 
been applied to control the speed of the underwater 
robot and the state variables and control forces have 

been obtained. The results are presented below. The 
speed curves of u, Vlinear, and w along with their 
desired values including ud, vd, and wd are reflected in 
Figure (3). The key objective is to tend the speed 
values towards zero. 

 
Figure (3): u, vlinear, and w speeds resulting from the 
conventional PID controller 

According to Figure (3), the state variable u has 
reached zero after 3 seconds. The state variable 
Vlinear has reached a constant value after 3 seconds. 
The state variable w has reached zero in about 3 
seconds. The curves of the state variables including the 
speeds r, q, and P are represented in Figure (4). 



 IISJ: July-August-September 2024                                                                                                                Page | 505  
 

 

 
Figure (4): r, q, P speeds resulting from the 
conventional PID controller 
 
According to Figure (4), the state variable p has 
reached zero after 2 seconds. The speed values q and r 
have reached a constant value after 2 seconds. Also, X, 
Y, Z, and K, M, and N control forces are shown in 

Figures (4) and (5) respectively. 

 
Figure (5): X, Y, and Z control forces resulting from 
conventional PID 

 
According to Figure (5), control forces X, Y, and Z 
initially had large values, which have gradually tended 
to zero over time. 

 
Figure (6): control forces K, M, N resulting from 
conventional PID 

 

According to Figure (6), the value of the control force 
K was initially large, which then decreased and 
reached a constant value. The control force M has 
faced many changes at first and gradually increased, 
finally, this variable has reached the value of 10. Also, 
the value of control force N was initially large. 
However, it decreased after 0.05 seconds and finally 
reached zero. 
B. Speed control with PID controller adjusted with the 
proposed genetic algorithm 
A cost function is defined for speed errors. Speed 

errors are indicated by v . The proposed cost function 

includes the mean square errors of the speed. The 
speed vector of the underwater robot is formulated as 

[ , , , , , ]v u vlinear w p q r
. Also, the speed errors are 

defined in the form in desiredv v v 
 where desiredv

is 
optimal speed and is considered equal to 

[0,0,0,0,0,0]desiredv 
. The proposed cost function 

includes the minimization of the square error of the 
speed state variables. The cost function is formulated 
in the form of Relation (13). 

6
2 2

1 1

1
( ) ( )

N
j j

i d

i j

J mean v v v
N  

  
 

(13) 

where mean is mean operator and v  indicates the 

speed error. Indices i and j indicate the sample number 

and state number, respectively. Also, 
j

iv
and 

j

dv

respectively indicate the speed of the i
th
 sample of the 

j
th
 state of the underwater robot and the optimal speed 

of the j
th
 state of the underwater robot. Also, N is the 

total number of simulation samples. This number 
depends on the size of the time step. The index i is 
calculated from the 1

st
 to the N

th
 sample. The index j 

reflects the state number calculated from 1 to 6. In the 
cost function, the squared errors of all 6 states are 
calculated and aggregated for all samples. Finally, the 

mean value is calculated. 
The role of the genetic algorithm is to determine the 
PID coefficients. Due to the existence of 6 states of the 
differential equation, 6 states can be defined in the 
controller. Also, kp, ki, and kd coefficients are defined 
for each state. Therefore, a total of 18 coefficients 
must be evaluated. These 18 coefficients are initialized 
by the genetic algorithm so that the lowest value for 
the cost function is obtained. At the point where the 
cost function is minimized, the coefficients found are 
stored as optimal PID coefficients. Then these 

coefficients are fed to the robot model and the program 
is executed. Finally, the outputs including the robot's 
speeds are recorded and the corresponding graphs are 
drawn. 
In light of the above, the input of the genetic algorithm 
includes the PID controller robot model and the 
calculation of the cost function. PID coefficients are 
the outputs of the genetic algorithm. Based on the 
generated outputs, the program is re-executed and the 
results are recorded. 
In the genetic algorithm, the maximum number of 

iterations is set to 100 and the population size is set to 
30. The probability of mutation and cross-over were 
considered equal to 0.1 and 0.8, respectively. It should 
be said that the probability of cross-over in a genetic 
algorithm is usually a number close to 1. Also, the 
mutation probability is chosen to be very small. 
Population size and number of iterations are chosen 
arbitrarily. The values are chosen in such a way that 
the optimal solution can be reached. We execute the 
genetic algorithm by adjusting the parameters of the 
PID controller. The upper and lower bounds of the PID 

parameters are considered as follows: 
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Lb= [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001]; 
Ub= [10 10 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 
]; 
Figure (7) shows the plot of the best cost resulting 
from the genetic algorithm regarding the number of 
iterations. 

Upper and lower bounds: 
Upper and lower bounds for kp: 

Lb(kp): [0.01 0.01 0.01 0.01 0.01 0.01]; 
Ub(kp): [10 10 10 10 10 10]; 
Upper and lower bounds for ki: 
Lb(ki): [0.01 0.01 0.01 0.01 0.01 0.01]; 
Ub(ki): [10 10 10 10 10 10]; 
Upper and lower bounds for kd: 
Lb(kd): [0.001 0.001 0.001 0.001 0.001 0.001]; 
Ub(kd): [1 1 1 1 1 1]; 
The resolution for calculating the parameters is set to 
three decimal places. 

 
Figure (7): The curve of the best cost regarding the 
number of iterations using the genetic algorithm 

 
According to Figure (8), the value of the cost function 
varies from 0.2 to 0.03. The PID parameters adjusted 
using a genetic algorithm are shown below. 

[6.2404 7.4732 6.4056 7.2841 8.3092 7.5546]Kp   
[0.4878 1.6407 0.6944 0.1452 0.9377 0.3984]Kd   
[0.5786 0.7179 0.6967 0.5258 0.2447 0.5167]Ki   

According to these PID controller parameters, we get 
the results. 
In Figures (8) and (9), the plots of u, vlinear, and w 
speeds and p, q, and r speeds are represented, 
respectively. 

 
Figure (8): state variables of u, vlinear, and w speeds 
resulting from the genetic PID controller 
 

According to Figure (8), u and w have reached zero 
after 0.02 seconds. Also, the vlinear speed reached 
zero after 0.02 seconds. In Figure (9), the speeds p, q, 
and r resulting from the PIDGA controller are 
represented. 

 
Figure (9): Speed variables p, q, and r resulting from 
genetic PID controller 
 
According to Figure (9), the values of q and r have 
reached zero in about 0.02 seconds. Also, the speed of 
p has reached zero in about 0.02 seconds. In Figure 
(8), the control forces X, Y, and Z resulting from 

PIDGA control are represented. 

 
Figure (10): Curve control forces X, Y, and Z 
regarding time resulting from PID controller based on 
genetic algorithm 

 
According to Figure 10, all three plots X, Y, and Z 
have reached zero after 0.02 seconds. 

 
Figure (11): Curve of control forces K, M, and N 
regarding time resulting from PID controller using 
genetic algorithm 

 
According to Figure (11), the value of K has reached a 
constant value after 0.02 seconds. Curve M has 
reached 100 in less than 0.02 seconds. The curve N has 
reached the value of 25 in about 0.02 seconds. For a 
more accurate comparison, the plots obtained from 
conventional PID and PID adjusted with genetic 
algorithm are drawn below. 
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Figure (12): Comparison of plots of u, vlinear, and w 
speeds obtained from two conventional PID and 
genetic PID controllers 

 
According to Figure (12), the state variables of u, 
vlinear, and w speeds obtained from the proposed 
controller converged to zero earlier than the 
conventional PID controller. 

 

Figure (13): Comparison of p,q, and r plots obtained 
from two conventional PID and genetic PID 
controllers 

 
According to Figure (13), the state variables p, q, and r 
resulting from the proposed controller converge to zero 
earlier than the conventional PID controller. 
According to the obtained results, the PID controller 
adjusted with the genetic algorithm is more successful 

than the conventional PID, because the convergence of 
the speed state variables to the desired values occurred 
faster. However, the error of the cost function in the 
proposed controller is 0.0356, while the same value for 
the conventional PID controller is equal to 0.7583. In 
short, the proposed method has performed better than 
the conventional PID regarding the mean square error 
and the speed of convergence to the desired objective. 

 

Table (6): Comparison between PID and PIDGA controller methods 

Controller 
methods 

Advantages Disadvantages 

Conventional 
PID 

 Simple implementation 
 Lack of controller complexity 
 Acceptable solution in most cases 

 It is difficult to set the coefficients. 
 Less accuracy and more error compared to PIDGA 
 Slower response compared to PIDGA  

PIDGA 

 Higher speed and accuracy of 
output response 

 Less error and fluctuations than 
conventional PID 

Longer runtime than conventional PID  

 
 

Table (7): Comparison of PID and PIDGA controller methods 

Controller methods 

Cost 
function 
value (mean 
squared 
error) 

     
            
 

                    

Conventional PID 0.7583 0.0143 0.0129 0.0173 0.1629 0.5323 0.0187 

PIDGA 0.0356 0.004 0.0049 0.0056 0.0065 0.0078 0.0067 

 
According to Table (7), the value of the cost function 
including the mean square error of the speed, resulting 
from the proposed PIDGA controller, is lower. It also 
provides more advantages compared to the 
conventional PID controller in various applications. 

CONCLUSION 
Remotely operated underwater vehicles (ROVs) are 
widely used in many subsea applications, from 
environmental inspection to repairing subsea structures 
associated with the power and oil industries. Often the 
ROV has to constantly change its operating tool or 
release the load, which subsequently causes a change 

in its behavior. In this study, the setting of PID 
controller parameters for the nonlinear model of an 
underwater vehicle was investigated based on a genetic 
algorithm. The underwater vehicle under study is a 
robot with 6 degrees of freedom. First, the robot model 
was defined and the basics of PID controller and 
genetic algorithm were described. Since it is difficult 
to adjust PID controller gains manually or by trial and 
error, a genetic evolutionary optimization algorithm 

was used for this purpose. It is a population-based 
algorithm based on random search, which is free of 
gradient information of the cost function. Due to the 
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characteristics of cross-over and mutation, this 
algorithm can escape from local optima. As a result, 
this algorithm was used to solve the problem of 
adjusting PID controller parameters for remote 
underwater robot systems. Subsequently, the optimal 
controller benefits were calculated offline with less 
computational effort using optimal and actual state 
variables. To evaluate the performance of the proposed 
optimization scheme, its results were compared with 

the conventional PID controller. The results proved 
that the performance of the PID controller adjusted 
with the genetic algorithm is better compared to the 
conventional controller regarding the speed of 
convergence to optimal values and error minimization. 
In the future, it is suggested to use new meta-heuristic 
optimization algorithms to control this type of robot to 
adjust basic controller parameters such as PID and 
types of sliding mode. Due to the proper performance 
of the proposed design, the proposed controller can be 
used for other underwater robot dynamic models. 
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