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ABSTRACT:  
Massive Multiple-Input Multiple-Output(M-MIMO) systems are one of the mainstays of the new generation of 

wireless communications and have the potential to increase data throughput, reduce energy consumption and increase 

the security of communication lines. In this paper, we intend to investigate channel estimation, which is one of the 
most common parts of telecommunication systems and is considered as the main cause of disturbance in M-MIMO 

systems and needs to be compensated. Therefore, first of all, considering that systems with a large number of antennas 

as well as high bandwidth represent a thin multi-path structure, the sparse domains of M-MIMO systems in frequency, 

time, angle and we describe the hybrid model of these domains and then we deal with temporal and spatial correlations 

in this type of channels and finally we simulate the spatial correlation in this type of sparse channels which the results 

show less pilot overhead is required if using this method. 
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INTRODUCTION:  
In recent years, the rate required to send data has 
increased significantly due to the use of smartphones, 
tablets and other communication devices. According to 
forecasts, this need will increase in the future. The 
evolution of cellular telecommunication network 
generations can be attributed to the growth in the 
number of wireless devices, higher data rate demand 
and higher quality experience. 
In addition to the growing number of devices 
connected to the Internet, as shown in Figure (1), data 
traffic is growing exponentially. The fifth generation 

(5G) network is projected to account for 12% of 
mobile traffic in 2022. Also in 2022, the average 5G 
connection is expected to be nearly three times higher 
than the average 4G connection. In summary, some of 
the parameters considered in the fifth generation are: 
connection of more than 100 billion devices to the 
Internet, a delay of one millisecond (in the third 
generation network, this number was equal to 100 
milliseconds and in the fourth generation, equal to 50 
milliseconds) and Data rate of 10 gigabits per second 
(Barnett et al, 2015). 
The introduction of new solutions to meet these needs 

has led to the idea of fifth generation cellular 
telecommunications by introducing its own new 
technologies. In 5G networks, five new technologies 

and orientations will emerge, one of which is the mass 
multi-input-multi-output system (Boccardi et al, 2014). 
Mass multitasking technology will be an important 
part of 5G networks that will be widely used in the not 

too distant future. 
Massive multiple-input multiple-output technology is a 
promising approach for the future of 5G 
communications due to its spectral efficiency and high 
energy efficiency. An accurate channel estimate is 
necessary to realize its potential performance. Channel 
estimation in M-MIMO systems is one of the most 
influential parts that is one of the limitations of using 
this technology. 
 

Article Structure: 

We continue the article in the following order: First, in 
the second part, we examine the spatial domains in M-
MIMO systems, in which we describe the frequency 
domain, time domain, angle domain, and the combined 
model of the transmission in the domain. It combines 
angle and DFT. Then, in the third section, we examine 
and describe the temporal and spatial correlations in 
thin channels, and review the up-to-date work done in 
this area. Continuation of the spatial correlation 
simulation scheme used and finally concluding the 
work done. 
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Figure 1 - Monthly traffic of mobile phones by type 

of network connection [1]. 

 

Investigation of sparsity domains in M-MIMO 

systems: 
Studies (Bajwa et al., 1991) show that systems with a 
large number of antennas as well as high bandwidth 
represent a sparse multi-path structure. The results of 
practical experiments show that in M-MIMO systems, 
specific channel views can be presented sparsely. The  

presence of a large number of antennas gives a degree 
of freedom in the system Although in scattering 
environments, most channel coefficients are small, in 
other words, many of the coefficients that describe the 
multi-channel behavior of M-MIMOs are zero or are 
too small to be ignored.  Research has shown that 
channels in the frequency domain can be represented 
almost sparsely and converted to other domains will 
also be sparse (Wunder et al, 2015). As a general 
model, the channel can be described as follows. 
 

(1)        
 
Where and are unitary matrices that are a linear 
transformation of the H matrix with the aim of creating 
a sparse matrix. Due to its sparse structure, H 

estimation is possible using intensive measurement. 
Much work has been done on the use of channel 
conversion to show the property of sparsity in various 
domains such as time domain (Masood et al, 2015), 
(Chen et al, 2016), in the field of frequency of channel 
vectors after conversion, in frequency Different cells 
will be sparse (Wen et al, 2015). In the virtual angle 
domain, where the obtained channel vectors after 
conversion are sparse in different directions. It has also 
been observed that in many cases the vectors of the 
obtained channels after the conversion pattern 

represent the same sparsity. 
 

Frequency domain: 

The use of a large number of antennas makes it 
possible to observe the approximate sparsity behavior 
in the frequency display of channels. In fact, the 

channel frequency response can be assumed to be 
sparse. The channel impulse response is sparse due to 

the limited number of scatterings, and the frequency 
conversion will almost retain the sparsity properties. 
For example, in a multi-carrier transmission system, 
especially OFDM, such as the following equation, 
 

(2)        
 
Where the vector with length L contains the 
transmitting OFDM symbols. The channel matrix with 
dimensions and vector corresponding to the received 
signal in length is equal to the number of subcarriers 
and w is equal to the white noise vector in length. The 
matrix H has the property that most of its components 
are small in size and most of the signal energy is 

concentrated in the original diameter and this energy 
decreases as the elements move away from the original 
diameter (Berger et al, 2010). Demonstration of matrix 
sparsity can be expressed as follows. 
 

(3)    (     )   ( )    
 

Which in the equation     is an unitary matrix with 

     dimensions and    ( ) vector H matrix. 

 

Time domain: 

The characteristics of a wireless multi-channel channel 
can be expressed sparse in time. Sparsity in time is due 
to the existence of a limited number of scatterings that 

are distributed in space. These scattering generates a 
limited number of paths that the transmitted signal can 
transmit from transmitter to receiver. The sparse vector 
can model the channel impulse response vector in our 
time domain between a user antenna and an antenna 
across the base station. The equivalent of the 
frequency representation can be obtained by taking the 
Fourier transform as follows: 
 

(4)        
 

Where     is a single discrete Fourier transform      

matrix in which (    )th element is obtained as follows, 
 

(5)  
     

 

√ 
     

 π

  

 
By making changes, the display in the frequency 
domain proposed in (Masood et al, 2015), (Chen et al, 

2016), the obtained model is as follows, 
 

(6)         
 

Where         is the received signal with    sub-

carrier on the antenna.          is a diagonal matrix 

also includes the training sequences used and   
     displays the frequency domain  of the channel 
impulse response. The property of sparsity in 
broadband systems can be obtained by using the 
inverse DFT on the channel impulse response of 
channel, h. 

(7)        
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In this case,     is the display of sparse conversion in 
the time domain related to the impulse response of the 
channel h. 

(8) 
 

            

Therefore, using DFT, it is possible to display the 
sparsity properties of the channel by means of a 
discrete time channel vector model. 
 

Angle domain: 
The angle representation can be expressed in the base 
station from uniform linear arrays in which signals are 
received from fixed directions in the angle domain. 
These directions can be expressed as the inverse 
Fourier analysis of the channel, 

(9)        
  

 

Which in Equation (9),    includes the mixed gain of 
each path, including transmit and receive. Also, 

        and          the unit matrices in the 
transmission domain of beam are due to the 
transmission between the receiver and the transmitter. 
 

Hybrid model: 
(Bajwa et al, 2010) presents a hybrid model that 
combines angle transfer and DFT. This model is used 
in frequency-selective channels to extract channel 
representations with sparse lines. 
 

(10) 
 
 

   √
 

  
       

In which         is discretized by the transmission 

matrix in the angle domain.           and    
      the Fourier transform of      and    
     is the noise matrix. 

 

Work done in the domains of time and space: 

Channels between transmitter and receiver can have 
spatial, temporal, or frequency correlations. Spatial 
correlation occurs when different user channel 

matrices have common backups, meaning that a 
number of non-zero domains in their matrices are the 
same. Having a number of common scatterers in 
signaling to all users will create such a feature. The 
reason for the temporal correlation is the slow changes 
in the propagation environment, which in turn cause 
the matrix supports to change slowly over successive 
time frames. On the other hand, there is more 
frequency correlation in the OFDM scenario where the 
channel matrix has different supports between 
different frequency carriers. sparsity is more common 

in frequency-selective fading channels, and the main 
reason for this is the limited scattereres in the 
propagation environment, with the difference that the 
channel is modeld based on a number of paths with a 
specific delay and gain. Assuming a large delay 
spread, the channel impulse response matrix will have 
a sparse display in the time domain. Once the sparse 

channel matrix display is obtained, it is possible to 
estimate the channel with a smaller number of pilots 
using compressive sensing methods. In this regard, the 
methods of sparse signal recovery in the field of 
compressive sensing divided into three general 
categories: greedy, convex and repetitive optimization 
methods have been used. However, in addition to 
specific compressive sensing algorithms, some papers 
have provided control methods for adjusting the 

required pilot in a adaptive manner to find the best 
number of pilots in a adaptive manner and to improve 
channel estimation (Lau et al., 2016), (Liu et al, 2016). 
In the following, we review the articles that show the 
sparsity of massive multiple-input-multiple-output 
systems in both time and space, and analyze the 
different channel estimation techniques used in the 
field of compressive sensing, and finally we describe 
our case model. 
 

Temporal correlation: 

In the paper (Chandra et al, 2014) the channel is 
estimated in the presence of flat fading and taking into 
account the slow changes of the propagation 
environment over time and the use of the temporal 
correlation feature. Therefore, it is assumed that the 
user's channel matrix has common supports over 

consecutive time frames. He then proposed a greedy 
algorithm for channel recovery that was able to take 
advantage of the sparsity of the channel matrix and 
common supports in consecutive timeframes, 
ultimately reducing the amount of pilot required. In the 
article (Lau et al, 2016), as in (Rao and Lau, 2015), a 
scenario with flat fading is used. Assuming that the 
channel sparsity order is not available and has 
introduced a new algorithm that is stable to sparsity 
order changes. For this purpose, he used the closed-
loop technique to adjust the pilot number based on the 

quality of the estimate. In addition, the paper (Minn et 
al, 2006) has shown that by using channel time 
correlation, the pilot required to estimate channels 
associated with several OFDM symbols can be further 
reduced. 
In a situation where the pilot overhead of the downlink 
channel estimation consumes a large amount of 
communication resources, especially for the FDD 
massive multiple-input multiple-output systems, the 
paper (Zhang et al, 2018), to solve this problem, A 
downlink channel estimation method using Distributed 

Compressive Sensing(DCS) has proposed to slow the 
changes of the statistical characteristics of the channel 
in successive frames and to note that the sparse 
channel information and the support set for 
consecutive time intervals without The change remains 
in addition to fully exploiting the common spatial 
distribution across several subchannels in the 
frequency domain. This paper deals with the previous 
support information with respect to the temporal 
correlation of consecutive channel frames in order to 
reduce the pilot overhead. The paper (Zhang et al, 
2018), in particular, proposes a hybrid structure to 
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examine the channel in the current frame based on the 
previous frame support information, using slow 
changes in the statistical characteristics of the channel. 
Using the common spatial sparsity and previous 
support information of the previous frame, it divided 
the estimated channel in each subcarrier into the 
current frame into two parts: a dense section 
containing elements indexed by the previous support 
and a sparse section containing elements indexed 

support complement set in previous frame. The DCS-
assisted channel estimation algorithm then combines 
the DCS and LS methods, which are used to estimate 
the dense and sparse sections of the angle-domain 
channel coefficients between different subcarriers, 
respectively. In addition, the uplink-downlink angle 
response is used to obtain the previous support  
information effectively to obtain the uplink initial 
backup estimate. This method can reduce the pilot 
overhead compared to downlink. 
The paper (Huang et al, 2020) proposes a channel 

estimation algorithm called gBAMP. In this algorithm, 
using time block-time-frequency multi-input-multi-
output block systems, the selected index sets are 
optimized in the algorithm iteration process to improve 
the algorithm stability. Then, in the absence of the 
threshold parameter, the condition for stopping the 
adaptive repetition using the residual is determined 
based on the Frobinius norm and proves the 
effectiveness of the method. 
The paper (Zhao et al, 2020) proposes a low 
complexity estimation algorithm based on compact 

measurement for multi-antenna mobile terminals to 
reduce the terminal computational overhead. In this 
design, the mobile terminal estimates the downlink 
massive multi-input multi-output channel and uses the 
spatial sparsity properties of the massive multi-input 
multi-output channel to reduce the overhead. Since the 
different antennas of a terminal have the same set of 
support, this algorithm estimates several indices in 
each iteration and collects the estimated indices of the 
different antennas at the end of each iteration. As a 
result, it reduces the total number of iterations of the 

algorithm. It then obtains a stop condition for a greedy 
algorithm that stops the iteration process due to the 
residual energy. 
 

Spatial correlation: 

In this section, we review articles that have based their 

channel estimation on massive multi-input multi-
output systems based on different spatial correlation 
modes, and explore the different techniques under 
consideration. 
The paper (Rao and Lau, 2014) considers the channel 
with flat fadind and imagines the spatial representation 
of the space using the angular domain for the M-
MIMO channel matrix. Considering the multi-user 
scenario for its model, it uses spatial correlation 
between different users and proposes an algorithm for 
estimating the channel using greedy recovery methods 
in the field of compressive sensing, which can be a 

common support feature use between users's channel 
matrix as well. 
The paper (Sadeghi and Azghani, 2021) proposes a 
sparse-based algorithm for more efficient channel 
estimation. For this purpose, a problem modeling is 
proposed to exploit the spatial correlation between 
different BS antennas as well as the similarity between 
the user of the channel support set. A repetition-based 
threshold method has been proposed to approximate 

the channel matrix, which has been effective in 
estimating the channel due to the large number of base 
station antennas and consequently the large number of 
channel paths. 
Also in line with the idea of using channel estimation 
in M-MIMO systems, FDD-based channel estimation 
(Björnson and Ottersten, 2009) using spatial 
correlation of channels has shown that the pilot needed 
to evaluate The canal can be reduced by rice 
distributing. References (Gao et al, 2014) and (Qi and 
Wu, 2014) have used spatial and sparse correlation of 

latency channels to estimate channels with reduced 
required pilot, but assuming channel sparsity in The 
user is an unrealistic assumption. 
In order to use compressive sensing to reduce the pilot 
overhead cost for channel estimation in wireless 
communication systems, (Kuai, et al, 2019), have used 
structured turbo compressive sensing, which is a 
framework for structured sparse signal recovery to 
provides reduced computational complexity. This 
paper addresses the problem of estimating OFDM-
based M-MIMO channels in a FDD system. Using 

structured frequency-angle domain and angle-delay 
domain delay of OFDM-based M-MIMO systems, 
under structured turbo compressive sensing framework 
using frequency-angle and angle-delay domain 
probabilistic models and the design of channel 
estimators based on message transmission shows the 
channel. In the following paper, several structured 
turbo compressive sensing algorithms for channel 
estimation of OFDM-based massive multi-input multi-
input systems are proposed using a structured sparsity 
with fast convergence speed and low error 

performance. The following article (Akbarpour-
Kasgari and Ardebilipour, 2019) also proposes a 
structured turbo compressive sensing algorithm that 
manage effectively channel sparsity in various areas, 
including the angle domain, the frequency domain as 
well as the delay domain. It also determines the 
performance of the proposed algorithm by state 
evolution. The paper (Zeng et al, 2021) proposes a 
channel state information feedback method based on 
sparse learning in an compressive sensing framework 
for massive multi-input multi-output systems. He goes 
on to say that the key point is to consider the sparse 

structure of the channel state information through the 
least squares return algorithm and to process the sparse 
base with a continuous update. Based on this, a 
comparative dictionary characteristic of sparse channel 
state information is constructed, which shows that it is 
highly accurate in channel recovery. 
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The paper (Jingzhi et al, 2021) proposes a dual-choice 
channel estimation method based on distributed 
compressive sensing for massive multi- input multi- 
output system. In the first step, it formulates the 
problem of estimating dual-choice channels within a 
distributed compressive sensing framework. He then 
theoretically proved the combined sparsity of the dual 
select channel by showing that the channel coefficients 
in the converted domain have a spatial correlation 

between adjacent antennas. He then reconstructed the 
channel coefficients with a distributed compressive 
reconstruction algorithm using a combined sparsity of 
the converted domain coefficients related to the 
channel between the different sending and receiving 
antennas. 
The paper (Nouri et al, 2020) introduces a new 
compressive sensing algorithm that considers the 
benefits of correlation between incoming and outgoing 
signals for iterative estimation. For this purpose, it 
uses the intersection between the paired users and then 

selects the ones that minimize the remaining norm 
while keeping the number of non-zero elements to a 
minimum. 
Due to the fact that the articles have shown that 
wireless communication in the delay domain tends to 
have a sparse channel impulse response. In line with 
the channel estimation strategy using sparsity in 
massive multi-input multi-output channels based on 
the added assumptions on the joint support between 
uplink channels, the paper (Lahbib et al, 2019) 
proposes a general approach that specifies in different 

channels beyond any additional assumptions. To 
achieve this goal, he proposed a training sequence, 
also known as a pilot sequence, and compressive 
sensing channel impulse response estimation 
techniques for uplink sparse massive multi-input 
multi-output channels. The simulations also show that 
the performance improvement of the proposed 
algorithm was between 5 and 10 for NMSE and 1 to 9 
for BER. 
 The channel matrix of massive  multi-input-multi-
output systems is scattered in the delay domain. 

Channel estimation based compressive sensing uses 
the sparsity of the channel matrix to improve the 
accuracy of channel estimation and reduce the pilot 
overhead. With this in mind, the paper (Kang et al, 
2019) proposes the block-compressive sensing 
adaptive tracking channel estimation algorithm (B-
CoSaMP). The proposed algorithm combines the 
spatial correlation of multi-input-multi-output 
channels due to the propagation of multiple antennas, 
short-range antennas at the base station and creates a 
block response based on block sparsity to improve the 
channel estimation performance.  

For conventional broadband wireless communication 
systems, delay channels are inherently sparse in nature 
due to the limited number of scatterers in the media 
and the large latency range (Dai and Wang, 2013). 
Meanwhile, for MIMO systems with an antenna array 
with a common location in the BS, channels between a 

single user, and different transmission antennas in the 
BS, very similar path delays due to the similarity of the 
highly scattered components in the environment. 
Diffusion channels indicate that the latency channels 
between the user and the different transmission 
antennas in the BS show a common sparsity when the 
antenna array aperture is not very large. This common 
feature is called spatial sparsity. Given the spatial 
correlation mentioned in the articles, in this 

dissertation we intend to draw our attention to this 
feature of MIMO channels, which is a kind of spatial 
sparsity of systems, and this correlation is the basis of 
our work. 
 

SIMULATION RESULTS: 
Next, in order to provide a spatial correlation in the 
sparse channels of massive multi-input-multi-output 
systems and the use and non-use of knowing the 
channel sparsity on the transmitter side and using an 
algorithm whose sparsity is obtained comparatively, 
we estimated the channel. And we have proposed the 
structured SOMP algorithm. The estimation 
specifications are in accordance with (Abedi et al, 
2025) and respectively, the system carrier frequency, 

       , system bandwidth         , DFT size 
was N = 4096, and protective guard length was Ng = 

64, which can have a maximum delay propagation of 
6.4 μs. we have considered. The flat antenna array is( 4 

 ×16  ( M = 64)We also consider a criterion for 
comparing performance, an LS algorithm, assuming a 
known channel support sequence on the user-side, and 
an algorithm similar to the proposed algorithm, the 
proposed modified algorithm, assuming a narrow 
channel level on the user's side. Figure (2) compares 
the performance of MSE with the proposed channel 
estimation and the MMSE algorithm (Zhai et al, 2019). 
It should be noted that the proposed scheme has a 

significant reduction in pilot requirements compared to 
the MMSE algorithm, because the MMSE algorithm 
only works well when equation (2) is correctly defined 
or exceeded.  
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CONCLUSION: 

In this study, after discussing the need to facilitate 
channel estimation in M-MIMO systems and the 
problems in enjoying the benefits of these systems 

such as spectral efficiency, we addressed the existing 
solutions in better channel estimation in these systems 
and We investigated and described the sparse channel 
estimation in the frequency, time, angle, and hybrid 
domain domains that combine transmission in the 
angle and DFT domains, and showed that depending 
on the modeling conditions, each of these models 
could estimate the channel. To facilitate. In the 
following, we reviewed the work done in the domains 
of using spatial and temporal correlations for 
structured estimation and enumerated and identified 

their differences. Finally, using spatial correlation and 
proposing a structured algorithm to the advantage of 
this We have discussed the algorithm in estimating the 
optimal channel. 
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